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Abstract
This overview details an applied approach to a sys-

tematic comparison of neural network architectures for a
single-sentence text classification task. Fine-tuning high-
dimensional feature vectors (word-embeddings) substan-
tiate as the main driver of accuracy for even the most
complex network structures. Generally, more intricate
architectures perform better than elementary ones, but
the increased accuracy does not outweigh the computa-
tional complexity of the classification task. Even simple
CNNs reach adequate results if combined with a trainable
custom-built embedding. Within more complex models,
Attention and state-of-the-art BERT embedding models
provide promising results for classification tasks of min-
imal input size (only up to a couple hundred words per
row, often less). The analysis classifies authors for less
than 20k total (training and testing) single-sentence ex-
amples.

1 Introduction
Even though the rise of digital data allows for ad-

vanced analysis, most of the world’s information remains
in written form. Many of the techniques developed over
the years to keep the pace of analysis on par with the
pace of data retrieval address numerical data, which
computers can process conveniently. This discrepancy is
the nourishing ground for the field of Natural Language
Processing (from here on out ”NLP”), which transforms
words into machine-readable entities for quantitative
analysis.

∗Lüttecke is a Masters student in Social and Economic Data
Science at the University of Konstanz. This research project rep-
resents the written report for the Machine Learning class taught
by Lyudmila Grigoryeva. The author would like to explicitly ex-
press his gratitude for the forum to conduct an applied data sci-
ence research endeavor and the feedback through discussions with
Dr. Grigoryeva. The project’s entire code can be found under:
https://github.com/marcluettecke/ML_project.

Within the field of NLP, many different tasks have
proven as highly relevant. Part-Of-Speech tagging1,
Chunking2, Named Entity Recognition3, and Semantic
Role Labeling4, represent some of the core tasks applied
to text data. This paper avoids addressing any of these
tasks specifically, to recognize a more universal question:
What are fundamental features of a classification network
to reach maximum accuracy?

To resolve the question, this project represents a sys-
tematic comparison of neural network architectures for
the task of single sentence classification. The high-
relevance of classification tasks with minimal input is ex-
emplified in topics, such as author identification (see early
research on plagiarism detection Ma and Hovy [44]), or
Twitter user research (research on Twitter bot detection
Kudugunta and Ferrara [38]). A simple neural net might
prove helpful to at least highlight cases, which seek fur-
ther investigation.

This short and intentionally less technical write-up
aims to build intuition for the main ideas of architectural
designs. Section 2 will develop the necessary intuition
to understand the details of the research design (further
explained in section 3. The discourse starts with an intro-
duction to the baseline model for performance compari-
son, namely a logistic classifier (section 2.1). It progresses
to detail the inclusion of word-embeddings (section 2.2)
as input-formatting to neural networks and concludes
with the detailed analysis of the included network ar-
chitectures (section 2.3). The report extends a short de-
scription of the data in section 3.1 through visualizations
and exploratory data analysis by comparing the models
and the utilized hyper-parameters of the architectures.
Section 4 closes with results and conclusive remarks.

1 Automatically derive the role of a word in the sentence, i.e.,
Noun, Verb, Adverb, etc.

2 Groups words together and classifies them similar to POS tag-
ging for individual words: i.e., noun phrase, etc.

3 Categorization of entities within the text into predefined bins,
such as person, location, organizations, etc.

4 Labels the role of a word in the sentence, such as agent, result,
location, etc.
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2 TECHNICAL DISCOURSE

2 Technical discourse
This chapter aims to build a common understanding

of the more applied discussion of the actual comparative
methodology. The explanations are intentionally con-
densed and only include the necessary details to under-
stand the encompassed vocabulary. Technical mathemat-
ical jargon is minimized to the point, where it can prove
useful to understand why certain techniques fail and oth-
ers achieve accurate results.

2.1 Logistic regression
A Logistic Regression Model (from here on Logit model)

is a probabilistic classification algorithm used in machine
learning. It is often one of the first concepts taught at
universities due to its intuition and computational ease.
Traditionally a Logit model is implemented to conduct
binary classification task, due to the functional form of
the logistic function (or softmax function):

σ(z) =
1

1 + e−z

which translates to the probabilities of z = 1 and z =
0 of:

P (t = 1|z) = σ(z) =
1

1 + e−z

P (t = 0|z) = 1− σ(z) =
e−z

1 + e−z

This form allows the function to bound the output be-
tween 0 and 1, which translates naturally into a proba-
bility mapping, as depicted in figure 1.

Figure 1: Source: Logistic Regression: A Simplified Ap-
proach Using Python. Illustration of how the input of a
Logit function is mapped to a 0 to 1 output space, which
is often used for probability mappings and classification
tasks.

For a multi-label classification task, the binary ap-
proach will fail, and the probability function needs the

extension to a joint-probability distribution. This ad-
justment allows the model to process multi-label inputs5:

P (t, z|θ) = P (t|z, θ)P (z|θ)

To then define the objective function6, we can minimize
the negative of the log7-likelihood, which is called the
cross-entropy loss:

ξ(t, y) = − logL(θ|t, z)

= −
n∑

i=1

[ti log (yi) + (1− ti) log (1− yi)]

= −
n∑

i=1

[ti log(σ(z)) + (1− ti) log(1− σ(z))]

By continuously adjusting the input weights to min-
imize the objective function, a logistic classifier offers a
valid benchmark for our experiment with a minimal com-
putational cost.

2.2 Word embeddings
Typical problems in NLP input stages arise, when

text is transformed into computer readable format.
Transformation to lower-case of the input, stop-word
removal8, tokenization9 and lemmatization10 represent
common pre-processing tasks.

Nevertheless, the resulting input matrix is often vast
for the most common mapping technique coined one-
hot encoding11. This representation suffers from sparsity
problems since a corpus often contains many thousand
words, and any sentence input will only contain a small
fraction of these words. This discrepancy results in a
matrix mainly filled with zeros and a few entries labeled
with ones.

5 The calculation surmises the characteristic of a joint probabil-
ity, namely a probability distribution determined by two freely
moving variables, is the same as the probability conditioned on
one, times the probability that the conditional variable will occur
with the fixed value.

6 Objective referring to the function, which throughout the ma-
chine learning phase serves as the focal point to address, here to
minimize.

7 The logarithmic conversion helps with the exponential compo-
nent of the original logistic function and can be applied without
loss of interpretability to a monotone function.

8 The removal of the most common word of a given language due to
their limited explanatory value. Examples are ”it”,”yourself”,or
”by”.

9 Splitting a sentence into a list of input tokens: such as ”Are you
here?” → [”Are”, ”you”, ”here”, ”?”].

10 Removing a word to its core component, such that ”loving” and
”loves” both reduce to ”love”.

11 A technique which summarizes each input sentence into an array
of ”number of examples” × ”unique words in text corpus” with
a one if given the word is present in the row of input and 0
otherwise.
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A more computationally efficient alternative are word-
embeddings12. A neural network trains a resulting fea-
ture representation either on a large general (not the
input text) text corpus, which is then forwarded as in-
put to fine-tuning for more specific tasks via transfer
learning13, or, alternatively, a custom embedding can be
trained on the input text itself. The vector representa-
tions of a word embedding carry semantic meaning, such
that tokens close in vector space, induce a closeness in
relative interpretation as well. Necessary extensions al-
low for sentiment specific embeddings Tang et al. [65],
contradiction-detection via word embeddings (Li et al.
[42], and multiple fine-tuned models, which are system-
atically compared in Turian et al. [71]14.

2.3 Network architectures
This section will describe the most common neural

network architectures from a more theoretical perspec-
tive. The main purpose is to build intuition for potential
drivers of the results in section 4. Many references along
the way allow for a more in-depth overview of the actual
methods.

2.3.1 Convolutional neural networks

Convolutional Neural Networks (from here on CNN15)
are a form of feed-forward neural nets16 and are most
prominently applied to problems of computer vision.
This structure allows researchers to summarize pixel in-
formation by repeatedly stacking so-called convolution
layers to eventually feed a small array of information into
a dense layer for classification, labeling, or other tasks. In
NLP, these input vectors are word tokens (either a one-
hot encoding or word-embeddings (for details see section
2.2), which then lead to a dense layer for the desired out-
put.

Convolutional layers perform surprisingly well and rep-
resent a computationally cheap alternative to more so-
phisticated models while being ignorant of the sequential
nature of the data. One of the main arguments for CNNs
is that even (the simpler) architectures that include a se-
quentiality notion into their derivation, rarely consider

12 Word representation via a high-dimensional (usually in the range
of 50 to 300) feature vector, in which the vector length and po-
sition carry actual semantic meaning. Prominent pre-trained
models are offered by Google’s word2vec (as detailed in Mikolov
et al. [45]) and Stanford’s Glove (published in Pennington et al.
[50]).

13 Transfer Learning means that general NN models are pre-trained
and more specific environments use the resulting model weights
as an input, which then, in turn, fine-tunes it for a specific task.

14 Techniques compared are distributional representations (Yarlett
and Ramscar [75]), Brown Clustering (Brown et al. [10]), Col-
lobert and Weston embeddings (Collobert et al. [16]), and HLBL
embeddings (Mnih and Hinton [47]).

15 First explained in the seminal paper LeCun et al. [41].
16 Architectures that do not form a cycle.

more than 3- or potentially 5-grams17 as input. While
figure 2 gives a concrete example of a small network18 for
an NLP task, figure 3 highlights the essential operations
of a convolutional network in general.

Figure 2: Source: Zhang and Wallace [77]. A simple
demonstration of a language classification into two classes
via a CNN. The architecture includes a convolutional
layer, feeding into a size 1 max-pool layer and a soft-
max activation function of a dense layer into two target
classes.

2.3.2 Recurrent neural networks

The overall structure of the neural network architec-
ture needs to be adapted to allow for the processing of
sequential information. The individual units will not only
derive results from the current input but also from pre-
vious inputs, which leads to a recurrent structure, most
prominently coined as Recurrent Neural Networks (from
here on RNN19).

While a CNN understands patterns over space, RNNs
learn patterns over time. Each unit within an RNN
passes on information to its successor, which allows for
a more natural interpretation and analysis of especially
text data20. While RNNs capture the critical aspect of
sequences within the input data, this characteristic of the
text might just be essential to specific tasks in NLP. For
a text classification task, while the interchangeability of

17 N-grams in general, or uni-grams or bi-grams for one and two
units, respectively, refer in computational linguistics to the size
of the section of n items from a given sample or speech. In
this case, it describes the number of words, fed as input to the
classification algorithm.

18 Built off an input token, a convolutional layer, a pooling layer
and a fully-connected layer for classification.

19 The first one-dimensional RNN structures are explained in [19]
20 ”The car hit the man.” and ”The man hit the car.” allow for

distinctly different semantic interpretations.
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Figure 3: Source: Understanding Convolutional Neural Networks for NLP. Illustration of a typical sequence of
convolutional layer and max pool layer, which are often used in sequence to reduce the parameter dimensions, while
increasing the feature size of the accompanying weight vector.

words might distort the overall sentiment in certain edge
cases, the sentence: ”I was very disappointed with the
service” might still be interpretable if it reads ”very ser-
vice. I disappointed was with the”. Computationally, re-
current networks are more expensive than CNNs, which
underlines the task-specificity of the underlying architec-
tures.

Figure 4: Source: Understanding LSTM Networks. Illus-
trating the sequential nature of a recurrent neural net-
work. Here X stands for the input at the various stages,
h for the output and A for the calculation of the weights,
for example via a tanh activation function.

Even though RNNs recognize sequential data, conven-
tional optimization techniques, such as most classically
SGD21, often suffer from a so-called vanishing-gradient22

problems to detect long-term relationships. The follow-
ing architectures offer solution proposals to this compli-
cation.

21 Stochastic Gradient Descent, which extends the classical paper
of Cauchy [11], an optimization algorithm (introduced through
Robbins and Monro [54], Kiefer et al. [33]), which updates the
training parameters stochastically in the direction of the gradient
of the objective function with a step-size of the learning rate α.

22 Refers to the phenomenon that through repeated derivative-
calculation as done during the training of a NN for long input
sequences, the impact of one unit to subsequent units not imme-
diately following, becomes mathematically minuscule.

2.3.3 Gated recurrent units

To address the vanishing gradient problem, Gated Re-
current Units (from here on GRU) introduce update and
reset gates to the RNN architecture. It allows preserv-
ing information from ”long-ago” by selectively deciding
which information to pass on. Chung et al. [14] first in-
troduces these mechanics.

Figure 5: Source: Understanding GRU Networks. Il-
lustrating the individual operations of the GRU unit in-
cluding the update and reset gate, as well as the overall
update function.

The update gate follows the following formula and is
depicted by a green line in figure 5.

zt = σ
(
W (z)xt + U (z)ht−1

)
It helps the model to determine how much of the past

information (from previous time steps) is necessary for
the future. This model proves especially powerful for
vanishing gradients since it can decide to copy all the
data from the past.
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A reset gate plays the antagonist to the update gate,
deciding how much of past information to forget. Figure
5 illustrates the general formula in blue and purple.

rt = σ
(
W (r)xt + U (r)ht−1

)
By multiplying the input with the weight functions for

the current period and previous information with a dif-
ferent weight matrix, we can find the desired mapping23

from the reset gate to present information. As usual,
a non-linear (traditionally the tanh activation) function
transforms the output to an adequate output-space.

In a final step, the update gate needs to apply its infor-
mation to the current memory gate. It connects all the
data from previous actions. Through this recurrent appli-
cation and filtering of relevant information, the network
addresses the vanishing gradient problem.

2.3.4 Long-short term memory models

An extension to the GRU cell is found in a more com-
plex updating process through Long-short term memory
cells (from here on LSTM). Hochreiter and Schmidhuber
[28] first describe the process, which is governed through
four gates, namely the cell state, the forget gate, the
update gate, and the output gate.

Figure 6: Source: Understanding LSTMs. Illustrating
the individual operations of the LSTM cell including the
conveyor belt on top, which represents the cell state, and
the forget, update and final output functions at the bot-
tom.

The following equations describe the general computa-
tions for the LSTM cell:

23 A Hadamard (element-wise) multiplication performs this updat-
ing between the reset gate input and the new.

c̃t = tanh (Wc [at−1, xt] + bc)

Gu = σ (Wu [at−1, xt] + bu)

Gf = σ (Wf [at−1, xt] + bf )

Go = σ (Wo [at−1, xt] + bo)

ct = Gu ∗ c̃t +Gf ∗ ct−1

at = Go ∗ tanh (ct)

Without too much detail, the overall intuition is that
forgetting Gf and updating Gu operations update the
cell state c̃t.

LSTMs have a separate update gate and forget gate.
This differentiation makes LSTMs more sophisticated
than GRUs but, simultaneously, more complex as well.
LSTMs require distinct memory units, which allow them,
in theory, to remember longer sequences. GRUs train
faster due to only two separate gate-operations and
might, therefore, outperform, LSTMs for smaller train-
ing data sets. Chung et al. [14], Yin et al. [76], Kaiser
and Sutskever [32] offer a comprehensive starting point
for comparative analysis.

Many extensions to LSTM cells are available. Tang
et al. [67] provides a particularly interesting one in deal-
ing with target-dependent sentiment analysis. Most ar-
chitectures only allowed for a single target classification
within an input sequence.

This lack of differentiation results in the fact that for
a given sentence, such as ”The weather today was nasty,
but the dog still behaved great.”, the sentiment given a
classical LSTM classifier will be identical for the targets
weather and dog.

Figure 7: Illustration by Tang et al. [66] demonstrat-
ing their TD-LSTM architecture and comparing it to the
regular LSTM architecture. The classification through a
softmax layer is fed the input of multiple targets, which
allows for a more contextual interpretation of the results.

This idea is captured by the top part of Figure 7, which
depicts the forward-passing nature of the memory cells.
More specifically, in the graphic, a low-dimensional fea-
ture representation represents each word, namely an em-
bedding (see Bengio et al. [6], Le and Mikolov [40], Pen-
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nington et al. [50]) and stacks it into an embedding ma-
trix. The embedding training is used from Google’s glove
learning algorithm, as described in Pennington et al. [50].
The general structure follows the logic of an RNN but
allows for long-term dependencies through its four-fold
structure of inputting, forgetting, updating, and out-
putting of specific te LSTM gates.

The results of this LSTM structure maps to a fully con-
nected linear layer, which passes on its output through a
softmax layer into a class probability. The reason this
framework requires the updated LSTM characteristics
to allow for target-dependent analysis stems from the
vanishing or exploding gradient problem of deep RNNs,
which Hochreiter [27] explains in detail as early as 1998.

2.3.5 Bidirectional models

Bi-directional models allow an extension to all primary
sequential architectures detailed so far. Schuster and
Paliwal [58] introduce the idea that general RNNs can
be split into two directions, namely a forward- and a
backward-state. This training stage can be particularly
useful for prediction tasks that require to know the next
word of a text sequence. It mimics the human peeking
forward to understand underlying mechanics better. The
forward- and backward stages are not intrinsically con-
nected, to avoid perfect prediction, due to knowing what
the next word will be.

Figure 8: Source: Understanding Bidirectional RNN in
PyTorch. The unidirectional RNN of section 2.3.2 is ex-
tended and split into two RNNs, one fed the forward the
other the reverse sequence. Eventually, both information
are then concatenated or summed up at every time step.

Graves and Schmidhuber [22] allows an extensive com-
parison of uni-directional (regular) LSTM architectures
versus their bidirectional counterpart, in which they ob-
serve more accuracy for bidirectional structures.

2.3.6 Attention models

Vaswani et al. [72]’s paper proposes an alternative
to the predominant, and often convoluted architectures,
which base their feature extraction on the interplay
between an encoder and a decoder through a atten-
tion mechanism. The authors introduce a novel single-
model state-of-the-art approach that outperforms exist-
ing frameworks on popular translation benchmarks while

reducing the computational cost to a fraction of compet-
ing architectures.

Historically, the architecture consists of an interplay
between encoder transforming the input of symbolic rep-
resentation to a continuous representation and the de-
coder, autoregressively mapping the continuous format
to an output sequence. An attention mechanism, which
forms a weighted sum over the output with the help of
key-value pair filter, fine-tunes the algorithm. Since this
function grows fast in complexity and experiences prob-
lems for establishing long-term dependencies, the authors
introduce a scaled-dot-product attention term, which sum-
marizes the query through a dot-product operation and
then applies a softmax function to obtain the respective
weights for the attention operation. This calculation fur-
ther parallelizes and, therefore, also calibrates linear pro-
jections of the attention mechanism and concatenation of
the results.

Through this application, the authors improved the
best results on the WMT24 English-German and the
WMT English-French data-set while only training for 3.5
days.

2.3.7 Bidirectional Encoder Representations
from Transformers (BERT)

Devlin et al. [17] proposes s a new language representa-
tion model, coined Bidirectional Encoder Representations
from Transformers (from here on BERT) to allow for easy
transfer learning25 incorporation for specific sub-tasks.

Even though the advent of utilizing pre-trained mod-
els is common in adjacent cases, most suffer from the
unidirectionality of the models (see Radford et al. [52],
Vaswani et al. [72]). The paper uses, at its core, the
inspiration of an old approach by Taylor [68], which ran-
domly masks single words during pretraining and teaches
the network to predict the shaded words (so the model
can not peak at the words it is supposed to either predict
or be feed subsequently). The training follows a two-
stage approach; first, the pre-training stage, in which a
large corpus of unlabeled data trains the architecture,
over different pretraining tasks.

Second, a model is initialized during the fine-tuning
stage, with the previous final model parameters and fine-
tuned with labeled data from the downstream tasks. The
authors adopt Vaswani et al. [72]’s model for the pre-
training stage, unlike Radford et al. [52], Peters et al.
[51], a bi-directional framework (as introduced by Graves
and Schmidhuber [22]) replaces the left-to-right models,
which becomes critical for the performance of the entire
endeavor. Figure 9 provides an intuitive insight into the
masking of the input tokens, as well as the classification
stage of the process.
24 Bojar et al. [9].
25 Transfer Learning means that general NN models are pre-trained

and more specific environments use the resulting model weights
as an input, which then, in turn, fine-tunes it for a specific task.
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Figure 9: Source: The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning). Illustration of
the BERT mechanism to utilize an encoder-decoder interaction while incorporating a bi-directional structure via
masking for embedding classification tasks.

Next sentence prediction and question answering rely
heavily on Taylor [68]’s masking method. For the fine-
tuning stage, the relevant tasks require swapping the
input data and minor layers and re-train the network.
BERT represents an extension to the ELMo network
Peters et al. [51], which introduced the notion of con-
text into word embeddings26, achieved through a Bi-
directional LSTM training phase.

3 Research design
This section details the research design of the study.

It explains the data source, the framework of the loaded
data, and will build intuition on the data through vi-
sual data explorations in subsection 3.1. It will then ex-
plain model comparison and chosen hyper-parameters for
a significant comparative structure in subsection 3.2. The
code, a short Readme file and the data can be found un-
der: https://github.com/marcluettecke/single-sentence-
classification-NN.

26 The same word might have different semantic relations to other
words, depending on the setting.

3.1 Data
The dataset contains about 20k single sentences of one

of three authors: Edgar Allen Poe27, H.P. Lovecraft28

and Mary Shelley29. The endeavor stems from the 2017
Halloween challenge posted on Kaggle, which describes
the dataset as follows:

”The competition dataset contains text from
works of fiction written by spooky authors of
the public domain: Edgar Allan Poe, HP Love-
craft, and Mary Shelley. The data was prepared
by chunking larger texts into sentences using
CoreNLP’s MaxEnt sentence tokenizer, so you
may notice the odd non-sentence here and there.
Your objective is to accurately identify the au-
thor of the sentences in the test set.”

Since the test data set does not contain any labels,
the training data set will build the entirety of our data
(which separates into training, validation, and testing
sub-datasets, detailed in subsection 3.2).

27 January 19, 1809 – October 7, 1849 - American writer most
prominently known for poetry and short stories, such as The
Raven.

28 August 20, 1890 – March 15, 1937 - American writer of horror
fiction and creator of the Cthulhu Mythos.

29 August 30, 1797 – February 1, 1851 - English novelist, creator of
Frankenstein; or, The Modern Prometheus.
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Figure 10: Comparing the 30 most frequent words in the entire data set, (left) including stop words and (right) with
stop words removed. The Figure shows how most of the almost tokens on the left are common building-blocks of
the English language without identification value. They are removed and the most frequent words for the cleaned
data carry more interpretative value towards an individual classification.

For data pre-processing, shortly detailed in the tech-
nical aside on word embeddings (see subsection 2.2), the
text is cleaned of stop words through the individual to-
kens for author classification. Figure 10 aims to explicitly
compare the word frequencies with and without the most
common English stop words included 30.

To dive into the individual data-sub-sets figure 11 high-
lights the overall counts of sentences in the dataset, split
by the authors. Even though Edgar Allen Poe (EAP) has
the most training labels, the difference has no impact on
the results (investigated of error sources for distinct mis-
classification) over many epochs and shuffled feeding of
the data into the networks via small batches.

Figure 11: Overview of the relative count of sentences by
author in the dataset shows a relatively balanced distri-
bution between the three labels.

30 As defined by the popular Natural Toolkit Library library for
NLP tasks.

Figure 12 provides more anecdotal intuition for the
most frequent words per author, as well as their distinct
vocabulary, which is part of the underlying data structure
for the text classification.

3.2 Model comparison
For the actual model comparison, the study follows

these successive steps.

3.2.1 Research objectives

1. Compare custom embeddings and pre-loaded
embeddings - during this phase, a simple CNN
model is trained for a glove31 and a custom word-
embedding32 based on our own text corpus. Due to
computational capacity limits and the exponential
increase in models to compare, the analysis discusses
one embedding method onward, which is used for the
entire rest of the comparative analysis.

2. Build a linear baseline classifier as a baseline
comparison - A simple Logistic Regression model
estimates the author attribution as an easy compar-
ison. Even though the underlying structure of the
text might not be understood by a strictly linear
classifier (which does not allow for transfer learning
or generalization of the results), the classifier is easily
built and the computational complexity is a fraction
of the efforts for a neural net.

31 Stanfords model published in Pennington et al. [50], which is
trained on 6 Billion tokens from Wikipedia.

32 Using Googles Word2Vec method.
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Figure 12: Wordcloud visualizations for the three authors of the labeled dataset. Interesting are some examples
for descriptive tokens for the authors, such as ”raymond”, as in Lord Raymond, a main character in Mary Shelley’s
The Last Man. Another example is the word ”thing” for HP Lovecraft, which is often used to describe his Cthulhu-
creation.

3. Build a model comparison of increasing com-
plexity33 - The following models are trained34 and
evaluated on a test data set:

(a) Logistic regression model
(b) Simple embedding layer
(c) Embedding + CNN
(d) Embedding + RNN
(e) Embedding + BD35-RNN
(f) Embedding + GRU
(g) Embedding + BD-GRU
(h) Embedding + LSTM
(i) Embedding + BD-LSTM
(j) Embedding + Attention
(k) BERT

4. Train the models with a trainable embedding
layer to understand how good of a classification ac-
curacy can be achieved in a more realistic setting36.
This results in the models (a)-(k) repeated with the
training-parameter of the Embedding layer37 set to
True.

5. Communicate the results via visualizations
and accuracy metrics to acquire a deeper under-
standing of how useful neural networks of increasing
complexity prove for text classification tasks of min-
imal input.

33 It is important to notice that the model includes the dense classi-
fication layer plus minimal pooling layers, even if not specifically
mentioned.

34 The Python Deep Learning library Keras building on a Tensor-
flow backend is used to initiate, compile, train and evaluate all
models.

35 Bi-directional networks, for technical details see section 2.3.5
36 The BERT model is trained under the Keras ktrain interface,

which allows for much less customization and also lacks a simple
visualization implementation. Therefore, for the BERT model
only training and test accuracy scores will be listed.

37 See the full documentation for more details on the layer options
here.

3.2.2 Hyper-parameters

The following groups of hyper-parameters define the
training process. Necessary details for the technical back-
ground, not covered in section 2, are listed in footnotes
with numerous citations for further details.

1. Word-specific parameters:

(a) Sentence max-length (tokens): 100
(b) Train-size: 0.85
(c) Test-size: 0.15
(d) Embedding-number of words: 10,000
(e) Embedding vector dimensions: 300

2. Architecture parameters:

(f) Filter size of convolutional Layers: 32
(g) Drop-out portion of drop-out layers: 0.2
(h) Recurrent drop-out of recurrent layers: 0.238

3. Training parameters:

(i) Optimization algorithm: Adam39

(j) Loss function: Sparse-categorical cross-entropy
loss40

(k) Epochs: 10041

(l) Batch-size: 256
(m) Early stopping patience: 50
(n) Early stopping parameter: Validation loss

38 Problems of using regular drop-out in recurrent layers is dis-
cussed in depth in Bayer et al. [3].

39 Adam represents an adjustable loss function, which unlike SGD
includes features of Momentum (originally discussed in Sutskever
et al. [63]), RMSprob (extensively discussed in Ruder [55]) and
the stochastic nature of SGD. It was first introduced in Kingma
and Ba [36].

40 Which is also called Softmax Loss and combines a Softmax ac-
tivation with a Cross-Entropy loss. The output covers proba-
bilities over the vector of labels for a sentence and is therefore
common in multi-class classification tasks.

41 Due to computational limitations, the BERT model was only
trained for 4 epochs.
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The training phase offered abundant opportunities to
fine-tune the hyper-parameters of the numerous models.
The resulting values have proven to result in the best
trade-off between computational complexity and classifi-
cation accuracy.

4 Results
This section details the results of the study. It explains

the outcomes, along with the research goals mentioned in
section 3.2.1. The code to reach the same results is listed
under this GitHub repository.

1. Embedding comparison: Since computational
rigor was a limiting factor, only the CNN model
trains on both a custom embedding and the glove
embedding (Pennington et al. [50]). For various di-
mensions (50, 100, 200, 300) of the feature vector,
the embeddings did not impact the test accuracy and
test loss results. Table 1 lists these metrics for CNN.
For the subsequent model specifications, the models
train with the custom embedding, since it allows for
more potential to highlight discrepancies between in-
cluding the embedding layer into the model and not.

2. Linear classifier as baseline: To understand how
easy or hard the task at hand is, a logistic classifier is
implemented and achieves an accuracy of 80%. The
F1 score42, precision43 and recall44 are on par with
the accuracy measures (see table 1). Table 3 high-
lights the true positives (correct labeling) and the
false predictions for each class.

3. Model comparison without training embed-
ding: This result lies at the heart of the study. This
goal, as well as the comparison with trainable em-
bedding models, contrasts the performance of neural
networks, which are not explicitly tweaked for text
classification, for single sentence labeling on a small
dataset. Table 145 details all accuracy measures and
observed classification metrics. Most notably, none
of the models reach the benchmark of a simple multi-
class logistic classifier highlighted in table 3.

42 A combined score for traditionally binary classification, extends
to multi-class labeling (by definition of a weighting algorithm).
The formula is: 2× precision×recall

precision+recall
.

43 Measure for the true positive rate over the predicted positives in
a classification.

44 Measure for the true negative rate over the predicted negatives.
45 Notice that different y-axis values indicate an Early Stopping

option by Keras, which allows abandoning the training process,
if a particular evaluation metric, for us the validation loss, did
not improve over a predefined span of epochs.

Predicted label

A
ct

ua
ll

ab
el HPL EAP MWS Total

HPL 656 137 71 864

EAP 65 1026 109 1200

MWS 36 149 687 872

Total 757 1312 867 2936

Table 3: The confusion matrix for the Logisti Re-
gression result shows the strong accuracy and the
balanced classification for the different authors. The
diagonal indicates the true positives in green and the
off-diagonal numbers highlight either the true nega-
tives or false positives (which is a deceiving specifi-
cation for a multi-label case) in red.

The second highest test accuracy provides either the
multiple dense layers of the baseline model or the
CNN model, both with just below 50% accuracy.
This outcome is higher than chance (which would
be 33% in a three classes case) but is not an ex-
cellent performance by any means. Figure 13 offers
some explanation to the poor performance: While
the Baseline model in subfigure 13a and CNN model
in 13b both follow smooth learning patterns (with
maybe a slight tendency to overfitting46), some mod-
els show partially strong tendencies of underfitting47

(see GRU in subfigure 13e) or overfitting (see BD-
GRU in subfigure 13f). The more complex models
in figure 14 seem to converge more smoothly and
learn more adequately. Without any problems of
over- or underfitting. The smooth curve of the more
complex classification algorithms demonstrates that
data as high-dimensional as sentence-tokens might
need more exhaustive model-representations to be
generalized.

4. Generally, the performance of the models, includ-
ing the embedding training, is much more accurate
than without it. Accuracies, which were just better
than random guessing, now include the fine-tuning
of the embedding representation and allow for re-
sults as high as 75 - 80%. The benchmark of the
simple logistic regression still represents a high bur-
den, but the BERT model (not highlighted in the
figures) was able to exceed it with 88% accuracy on

46 Refers to the problem in machine- and deep-learning that the
model learned patterns from the training data well, but suffers
from lack of generalization. It performs poorly on unseen data,
here the test data set and just follows the patterns of the training
data, without the inclusion of more general concepts.

47 The antagonist to overfitting, which indicated problems of the
model to grasp the complexity of the data. A higher training
than testing loss hint at a potential underfitting.
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Training data Testing data
Accuracy Loss Accuracy Loss F1-score Precision Recall

Logit - - 0.8068 0.4949 0.8067 0.8099 0.8068
Baseline 0.4722 1.024 0.4785 1.0219 0.4500 0.4800 0.4800
CNN 0.5253 0.9776 0.4989 0.9975 0.4800 0.5000 0.4900
RNN 0.4147 1.0697 0.4090 1.2500 0.4100 0.2900 0.3600
BD-RNN 0.4735 1.0208 0.4516 1.0432 0.4700 0.4700 0.4700
GRU 0.4030 1.0851 0.4087 1.0859 0.2400 0.1700 0.4100
BD-GRU 0.5439 0.9427 0.5177 0.9764 0.5000 0.5200 0.5200
LSTM 0.4982 0.98828 0.4843 1.0061 0.4700 0.4800 0.4900
BD-LSTM 0.5444 0.9386 0.5119 0.9797 0.5100 0.5100 0.5100
Attention 0.5488 0.9253 0.5350 0.9636 0.5200 0.5400 0.5400
BERT - - - - - - -

Table 1: This table shows the results of the model evaluation for the training without additional training of the
Embedding layer (other than using a custom embedding which was trained on the text corpus in the first place).
We can see that model complexity does not correlate with test-accuracy and that the embedding training in itself
accounts for a high amount of accuracy.

Training data Testing data
Accuracy Loss Accuracy Loss F1-score Precision Recall

Logit - - 0.8068 0.4949 0.8067 0.8099 0.8068
Baseline 0.9940 0.0597 0.8273 0.4543 0.8300 0.8300 0.8300
CNN 0.9996 0.0018 0.7840 1.8428 0.8100 0.8100 0.8100
RNN 0.4030 1.0869 0.4087 1.0869 0.2400 0.1700 0.4100
BD-RNN 0.9975 0.0099 0.7758 1.078 0.8000 0.8000 0.8000
GRU 0.6088 0.9333 0.5149 0.9983 0.4500 0.4700 0.5100
BD-GRU 0.99807 0.0096 0.7704 1.8309 0.8100 0.8100 0.8100
LSTM 0.9976 0.0054 0.7690 1.4893 0.7700 0.7700 0.7700
BD-LSTM 0.9353 0.1947 0.7905 0.5745 0.7900 0.8000 0.7900
Attention 0.9992 0.0022 0.7700 2.2913 0.7700 0.7700 0.7700
BERT - - 0.8800 - 0.8800 0.8800 0.8800

Table 2: This table shows the results of the model evaluation for the training including training of the Embedding
layer. Even simple models increase the accuracy and exceed any models that were trained without the Embedding
layer in table 1.

the test set. Other models are closer to the 80% as
well, with the best runner-up performance (82.73%)
in the dense-baseline model of just connecting the
embedding layer to subsequent dense layers. For
the more complex candidates, the BD-LSTM model
achieves 79.05% accuracy, and the Attention model
77%. All models suffer from strong overfitting prob-
lems, which makes intuitive sense since these models
increase their model complexity without acquiring

more data or additional regularization methods48 to
balance it. An interesting extension would be to
train a complex model, with additional regulariza-
tion to benefit from the accurate feature-extraction
without paying the cost of limited data access.

48 If the models had been tweaked more between the first round
(without embedding training) and the second round (including
embedding training) the comparability had suffered from too
many dimensions changed at once.
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5 DISCUSSION AND CONCLUSION

5 Discussion and conclusion
This paper illustrates the accuracy of a classifica-

tion task for single sentence author labeling for differ-
ent neural network models. The main driver in perfor-
mance seems to be the training of a meaningful word-
representation, i.e., the embedding layer, or for more so-
phisticated models, the BERT embedding. While more
complex models allow for better feature extraction to rep-
resent the high-dimensionality of text as an input vec-
tor, they also come at a significant computational cost.
Rich architectures, such as Attention, or BERT models
require significant effort to train, but consequently, reach
state-of-the-art performance. Further research is neces-
sary for a meaningful quantitative model, which balances
the trade-off between computational complexity and ac-
curacy. CNNs afford a simple but still well-performing
architecture, which does not necessarily convey sequen-
tial information well. However, through their convolu-
tion operations, they reduce the computational burden
while still extracting the main features. Model adaptions,
which extend vanilla CNN structures for computer vision,
such as ResNet, VGG, or Inception49 might be a fruitful
starting point for further improvements of a text classifi-
cation model. It might be important to notice that while
a single-sentence classification proves to be a consequen-
tial example for a common problem in NLP, it does not
characteristically represent the more sequential complica-
tions of many tasks. The average performance of LSTM
cells for this specific simplification for other tasks does
not invalidate the importance of sequential cell-models
for text interpretation in general.

49 Original seminal work: He et al. [25], Simonyan and Zisserman
[60], Szegedy et al. [64], respectively.
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