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(a) Existing manual formation description

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg (Offense)  vs  LASK Linz (Defense)

Red Bull Salzburg
Choose team

LASK Linz
Choose team

Offense
Game mode

Defense
Game mode

Show team Show team

Show ellipses Show ellipses

Display with relative scaling

(b) Proposed automatic visualization

Figure 1: This thesis develops a novel system for formation analysis. It integrates multi-match as well

as inter-match exploration of a large data set leveraging intuitive design elements to subset the data via

drop-down and hover effects to offer coaches a practical as well as comfortable and correct user experience.

Its automatic formation calculation offers faster and more accurate results than any existing alternative.

Abstract

A thorough understanding of the dynamics of collective movement patterns forms the founda-

tion of success in a diverse cross-section of competitive team sports. Nonetheless, the field of

soccer formation research fails to adequately serve the practitioners’ requirements by employ-

ing analyses that provide only slow, impractical, or anecdotal solutions. This master’s thesis

addresses this discrepancy by developing a system that analyzes an extensive dataset of 250

soccer games in an intuitive app design. The fast algorithmic logic and prediction accuracy

achieved in this thesis beat all current benchmarks, while the functional layout follows strict

design requirements developed in iterative feedback sessions with qualified domain specialists.

The application withstands the scrutiny of extensive quantitative and qualitative assessments

during detailed validation rounds with unbiased experts.

Zusammenfassung

Ein tiefgreifendes Verständnis der Dynamik von kollektiven Bewegungsmustern bildet die Grund-

lage für den Erfolg in einem breiten Querschnitt von kompetitiven Mannschaftssportarten. Den-

noch wird das Feld der Fußball-Formationsforschung den Anforderungen der Anwender nicht

gerecht, indem Analysen verwendet werden, die nur langsame, unpraktische oder anekdotische

Lösungen liefern. Die vorliegende Masterarbeit widmet sich dieser Diskrepanz durch die En-

twicklung eines Systems, das einen umfangreichen Datensatz von 250 Fußballspielen in einem

intuitiven App-Design analysiert. Die in dieser Arbeit erreichte schnelle Algorithmenlogik und

Vorhersagegenauigkeit übertrifft alle aktuellen Vergleichswerte, während das funktionale Layout

strengen Designvorgaben folgt, die in iterativen Feedbacksitzungen mit qualifizierten Fachex-

perten entwickelt wurden. Die Anwendung hält der genauen Prüfung umfangreicher quanti-

tativer und qualitativer Bewertungen während detaillierter Validierungsrunden mit unvorein-

genommenen Spezialisten stand.
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1 1 Introduction

1 Introduction

“ I’m constantly being asked about individuals. The only way to win is as a

team. Football is not about one or two or three star players.

”
Edson Arantes do Nascimento (Pelé), FIFA World Cup, 1962

The success of a competitive sports team emerges from the synergistic contribution of each team-

mate. Accordingly, a team’s performance is critically dependent upon each player’s individual

actions and the complex spatio-temporal dynamics by which all players combine to achieve a

collective objective. A comprehensive understanding of these dynamics and their contribution

to a team’s success could help teams gain a competitive edge. In this 471 billion-dollar indus-

try [3], any advantage can translate to large increases in profit. However, several diverse research

fields1 have struggled to identify, evaluate, and communicate the ingredients of successful collec-

tive behavior. Equipped with recent developments in data extraction methods, a vast dataset,

and exponentially increasing computer power, we are now uniquely positioned to utilize data

to offer insights via an intuitive system for multi-match analysis of collective movement patterns.

While some fields, such as economics, have relied upon automated quantification of performance

for several decades, this kind of rigorous analysis remains relatively new in sports. Combining

available statistics and computer science methods with those from sport and health sciences has

generated a recent outburst of creative solutions to automate existing reasoning and measure

success. One major obstacle is to locate athletes and translate their movements to a computer-

readable format. The CATAPULT system [1] attempts to address this problem via GPS tracking

systems, while alternative approaches rely upon color discrimination2 in team sports to locate

athletes [50, 64, 72]. With only limited usability of these systems due to impracticality or in-

accurate results, efforts shifted towards extracting information from the raw video as the most

natural use-case. Developments in the field of computer vision have enabled the detection of

human movements in video data [25, 26, 33, 34, 40, 47, 86]. Leveraging these advancements,

researchers have started to incorporate systems to extract 2D (x-/y-coordinates) and 3D (skele-

tal) data directly from video streams into sports research [16, 53, 57, 86].

While these new data can contribute to our comprehension of several sports, soccer became

one of its most popular and earliest adopters. Over time, soccer clubs have recognized the

potential benefit of extracting and analyzing previous matches’ data to improve team perfor-

mance. This adoption has led most professional sports teams to employ personnel as sports

analysts. These professionals aim to conclude data that could guide the future behavior and

performance of a team. Despite this ambitious objective, the data- and, consequently, the

1 These fields include cognitive sciences, behavioral psychology, health sciences, physiology, physics, biology,

computer science, and data science.

2 Color discrimination techniques classify agents by different color pattern. This approach is most appro-

priate for scenarios where the assigned colors are clearly defined, such as sports or controlled experiments.

Problems arise if the surrounding environment displays similar colors as the classification characteristic (such

as advertisements or sports banners).
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analysis-quality often lacks the statistical rigor and the usability to provide significant prag-

matic insights. These limitations have generally led soccer organizations to continue to rely on

more qualitative, non-technological approaches to improve team performance. This reluctance

to adopt recent technological advances discounts the valuable insights available from newly avail-

able data and the novel approaches to extract relevant information from these data. In addition

to the time-consuming data acquisition, most current system solutions address only individual

player movements with little regard for team-interactions. Recent research projects are under-

way to address the shortcomings of current best-practices of data analysis in sports with topics

of automatic event annotation [46, 66, 65], indication of potential passing stations [67, 90], and

what-if analyses [74] for crucial match situations. However, these papers mainly build on the

additive actions of individuals, not fully incorporating analyses of their collective behavior.

Advanced data systems might enable automatic extraction of simple fitness and match statis-

tics, such as possession distribution, running distance, or duel statistics. However, while these

insights enable the calculation of widely-used KPIs3 for players’ performance, they ignore a core

principle of team-sports: individuals do not win games, teams do. Therefore, it is imperative to

consider interactions among all players moving collectively to understand match dynamics.

Formations – a quantitative description of all players’ locations on the field – provide the most

accurate characterization of how players move collectively as a unit. They represent the most

prominent indicator (see A1 in Chapter 3) of a team’s overall strategic match plan. A head

coach leads a time, while his role lets him provide external insights and shape the team’s overall

strategic approach. His perspective from outside the collective affords him the ability to design

a match plan for movement behavior and tactical decision-making. A crucial component to this

match layout is identifying the most appropriate formation to address specific match situations.

While he cannot interact directly on the field, determining a formation proves to be one of the

most flexible adjustments he can make to impact the team’s collective behavior. Therefore, a

variety of factors determines the arrangement in a specific formation. All these formation data

points are manually collected and then processed to form the coach’s solutions and proactive

decisions, given the opposing players’ skill sets, the own teams’ skills, and the formational move-

ments. To date, no single system exists to address these practical questions of best responses

and facilitate the coach’s job to find the best solutions for a given match. This shortcoming

stems from three primary sources: first, the player position data was not as readily available

until recently; second, the audience is predominantly non-technical and slow to adopt rigor-

ous analytical methods; and third, defining discrete formations has proven difficult. Seemingly

straightforward questions, such as how robust a formation is over time, if the relative position on

the field is essential, and how to handle players switching roles within a formation, complicate

the precise definition of a formation. In an initial attempt to solve this problem, Bialkowski et al.

[10, 11] introduced the concept of role assembly – a classification of each point of a formation

to one specific player. Shaw and Glickman [66] then added more rigorous techniques to quantify

relative positions of players on the field for different periods of a match.

3 Key Performance Indicators, a common abbreviation for the main statistics to describe a performance.

These numbers are primarily domain-dependent.
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These papers form a seminal role within this young research field by addressing some of the

existing complications. However, they still lack a practical design to communicate their insights

to a non-technical audience. Alternatives [51, 88] aim to provide a system to analyze formations

but offer only single-match support in an unintuitive and predominantly technical layout.

This thesis seeks to close the defined research gap (Chapter 2) by introducing a web-based system

that follows an intuitive design layout (Chapter 3) without compromising the statistical rigor

to provide practical benefit. The contributions are fourfold: Computationally, the implemented

approach accelerates the current state-of-the-art formation calculation burden to a fraction of

previous techniques (Chapter 4). Increasingly accurate results exceed the formation prediction

accuracy of individual seasoned domain experts (Chapter 7.2). Visually, while adhering to a

familiar design choice, the system allows for new effects to communicate vital information effec-

tively, especially for multi-match analyses. Practically, close collaboration, iterative validations,

and detailed feedback from domain experts afford the development of an application that closely

mimics a coach’s work-flow on the sideline (Chapter 5). Rather than a single match-analysis, it

leverages data from two seasons—250 games in total—of a premier European soccer league to

provide an in-depth and longitudinal analysis of team dynamics (Chapter 6). This feature intro-

duces robustness that will only improve with additional data in the future. One of the overall

design prerequisites is extensibility: the system is easily adjustable for subsequent extensions

(Chapter 7.3) to eventually provide a holistic source to analyze a team’s collective movement

patterns.

The contributions laid out in this thesis allow the efficient and intuitive exploration of formations,

extending existing systems of soccer analytics with a crucial ingredient to quantify the drivers

of success in sports.

2 Related Work

The rise of data-science techniques offering novel insights into competitive sports and health

sciences accelerates the automatic retrieval of video data and subsequently the refinement of

analyses. The following sub-chapters aim to provide a broad overview of work in soccer analytics

by outlining the data retrieval (Chapter 2.1), common approaches within the intersection of

visual analytics and soccer data (Chapter 2.2), and the work in formation research (Chapter 2.3).

2.1 Tracking Positional Data in Soccer

Automatic extraction of positional data is in itself a broad field within sports analytics research.

It is vital to understand techniques common to the data-retrieval process. This chapter outlines

the field’s general approaches and explains techniques that collect the data lying at the core of

this thesis.
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While this thesis focuses on data retrieved through optical tracking, i.e., the derivation of player

positions directly from video data, other player positioning sources exist. Advances in sensor

technology [54, 55] and computer vision (classical work utilizes jersey colors [50, 64], while recent

work builds on neural networks [34, 72]) offer rich data sources. Information, such as movement

data [6], body posture [6, 16, 53, 76], and match events [7, 22, 34, 73, 79, 82, 89, 90] are readily

available.

Camera tracking proves to be one of the main challenges of computer vision. Given an input

image or a series of images from different cameras, camera tracking aims to recover information

about the camera model, including its position and orientation relative to scene geometry and

intrinsic parameters such as focal length or pixel aspect ratio. Defining a parametric camera

model and then fitting the parameters of such a model to observations from the input images

resolves this challenge. Most cases build on a simplified pinhole camera model, which induces a

projection of a 3D point to the corresponding location in the 2D image. The projection trans-

lates to a linear transformation between the corresponding homogeneous coordinates. In the

context of video data in team sports, the overarching goal is to register each input video frame

into a global coordinate system. The cameras used in a match are typically stationary and only

perform rotation and zooming. Therefore, it is possible to simplify further the transformation

between different camera views to a planar projective one, also known as a Homography.4 There

are different ways of estimating a homography’s parameters from a pair of input images, with

the most common approach involving extracting a set of critical points from the input data. Af-

terward, a keypoint matching step finds corresponding keypoint pairs between the two images.

A model fitting step uses the resulting correspondence information to produce a homography

estimate.

Historically, several approaches address the problems of tracking soccer players from video data.

Notable mentions include color encoding, which aims to distinguish jersey colors from the playing

field [47]. This method suffers from apparent problems with jerseys, which resemble either the

playing field itself, the banners surrounding the field, or the other team’s jersey. One of the most

challenging problems with such tracking is the brightness changes during a match—for example,

a match might offer a different brightness in the afternoon than the evening. This complica-

tion might even coincide with different portions of the field covered by shade. Iwase and Saito

[26] offer a refinement including homography techniques retrieved from multi-camera systems.

While this technique afforded a marginal improvement of state-of-the-art results back in the

day, it suffers from performance and set-up cost complications, which hinder a wider adoption

of the techniques. Wang et al. [86] provide a more recent proposal to tackle the ball-possession

problem, especially for longer sequences. Tracking the ball itself remains within an ambiguous

position. On the one hand, it proves to be very important for identifying team possessions and

automatically extract event data.

4 Homography offers a linear mapping between two input image. This technique allows the deduction of camera

motion, rotation, and translation.
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On the other hand, it is inherently difficult because of occlusion problems and fast movements

paired with the ball’s small size. Wang et al.’ s [86] multi-camera set up mitigates performance

concerns and includes first proposals for the less hectic long possessions within the realm of

soccer and basketball. Maksai et al. [40] introduce solutions by incorporating the projected

trajectory of the ball as an additional ingredient to the ball identification algorithm.

Another complication arises with re-identification. Players often leave the visible field of a cam-

era or cover each other, which subsequently becomes a challenge for the computer to recognize

the player not as an entirely new entity but as the same player as before. Gou et al. [25] of-

fer a widely used dataset from the computer-vision community of eight surveillance cameras on

Duke’s campus to train models, which outlines the issue of re-identification, proving its relevance

in security, social research, and sport sciences. Alternatives [75] introduce a novel deep learning

architecture to address this problem in real-time.

While this chapter provides a brief overview of the ongoing concerns of tracking persons in

general or players on the soccer field, the historical outline shows that tracking techniques have

come a long way since the color distinction algorithms of the late 1990s. Modern deep neural

networks are fed with external features, such as physical behavior, to overcome single-camera

systems and natural occlusion limitations. These techniques lie at the core of why advanced

analyses, such as the formation research proposed in this thesis, are even possible.

Additional to the raw positional data, an important enrichment is the annotation of events within

the game. Event data provide a match with an overall structure. Additionally to a match’s

natural temporal format, events allow the user to subset situations for when a team was ahead,

behind, situations of a successful pass, or a combination leading to a scored goal. Automatic

systems are already in place [22, 34, 73, 89, 90] and find many real-world applications [30, 46, 56].

Stein [69] provides a comprehensive description of event data in soccer:

“From a technical perspective, events are timestamped occurrences of previously known

and defined categories, optionally annotated with spatial coordinates or additional in-

formation as involved players. Most events are directly ball related and correspond

to actions with the ball (for instance passes or dribbling). Other events may be time-

dependent (e.g., start and end of a play period) or not directly dependent on the

ball (e.g., a foul situation during a free kick). [...] In practice, events might lack in

accuracy, as they are usually annotated manually or as fully automatic recognition

may produce false positive and negative events. As event data mostly contains infor-

mation about players interacting with the ball, event data enables to conduct overall

game statistics (e.g., passing networks, pass accuracy, or time between gaining the

ball and shot on target). “ (Stein [69], page 23)

2.2 Visual Analysis of Soccer Data

Soccer research uses a wide array of data aside from tracking data to acquire in-depth insights

into soccer success and automatic decision-making. Carling et al. [17], Castellano et al. [18],

and Sumpter et al. [80] provide broad overviews over ways to utilize soccer data for systematic

research. Theoretical soccer analysis closely connects with its actual applicability in the field.
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Practitioners want to explore the data and demand interactive tools to visualize various soccer-

specific events, such as ball passes, dribbles, or targeted shots [52]. Especially for coaches,

who are usually in urgent need of simple solutions to process video data, advanced methods

to automatically highlight exciting scenes from the game prove essential match analysis tools.

Janetzko et al. [27] afford a system to introduce semi-automatic filtering of events based on

spatio-temporal features, such as player acceleration or distance measures of players to the

ball. Many more aspects of data lie at the intersection of visual analytics and soccer, such as

fitness [14], defensive pressure [5], free spaces [70], and especially formation visualizations [10, 65,

66, 88]. Whenever large data sources, such as per-frame positional data of 22 players in soccer,

requires efficient processing, clustering observations and data-reduction algorithms become vital.

Sacha et al. [61] propose a semi-automatic approach to only resort to a small fraction of original

data without sacrificing much of the informative content via trajectory abstraction.5

2.3 Formation Research in Sports

One of the pioneers in formation research is Laurie Shaw, who extends the tracking data anal-

ysis to professional soccer. Shaw and Glickman [66] introduce necessary assumptions for the

algorithmic calculations derived in this thesis. Chapter 4 details this thesis’ methodology, intro-

ducing more efficient formation calculation approaches extending previous work in the field.

Bialkowski et al. [10] present a classification algorithm that identifies soccer teams by their for-

mation data exclusively. This approach introduces a critical contribution to how formations and

movements for soccer teams are perceived: can the complex information of what discriminates

one team from another be projected into a small number of dimensions to distinguish between

teams accurately - or more poignantly: does a formation describe a virtual footprint of a team

on the field? The authors propose an approach of deriving the formation of a team by solving

a minimum entropy6 data partitioning problem [32, 59]. Bialkowski et al. [11] outlines a full

derivation. The difference to a traditional k-means algorithm7 lies in the fact that individual

points are assigned so-called roles, determined by solving the Hungarian Algorithm [29]. For the

definition of the term “roles “, the authors describe their approach succinctly as:

“As a result, we refer to a formation’s generic players using a set of identity agnostic

labels to denote roles. A formation is generally shift-invariant and allows for non-

rigid deformations. Therefore, we define each role by its position relative to the other

roles (i.e., in soccer, a left-midfielder plays in-front of the left-back and to the left of

the center midfielder). Each role within a formation is unique (i.e., no two players

within the same formation can have the same role at the same time), and players

can swap roles throughout the match. “ (Bialkowski et al. [10], page 3)

More technically, the authors describe the heat-map of the probability of a team’s role assignment

as

5 Trajectory Abstraction describes a cohort of approaches to minimize the overlap between multiple trajec-

tories (in this case, player and ball movement trajectories) by, for example, clustering and grouping them or

introducing more advanced projection approaches.

6 Entropy defines the level of information or uncertainty of a variable. For a fully random variable (no bias),

the entropy sums to one since the outcome is fully unpredictable. For the distinct case, compare the entropy

H(X): H(X) = −
∑n
i=1 P (xi) logP (xi), with xi = 1

N
because it is drawn from a uniform distribution.

7 See Appendix A for a full technical aside on the k-means algorithm.
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P (x) =
N∑

n=1

P (x | n)P (n)

=
1

N

N∑
n=1

Pn(x),

where P (x) denotes the heat map for the entire team and n describes the set of roles. The

authors simplify their assumptions by assuming a uniform distribution over all possible roles,

which might diverge from empirical evidence (some roles, such as center midfielder, are naturally

more likely to occur than others— for example center back, or second striker).

Using the logic of minimal overlap for optimally spread-out formations, the authors solve the

Kullback-Leibler8 divergence to measure the overlap between two arbitrary distributions P (x)

and Q(x)

KL(P (x)‖Q(x)) =

∫
P (x) log

(
P (x)

Q(x)

)
dx.

Eventually, the objective cost function simplifies to

F∗ = arg min
F

N∑
n=1

H(x | n),

where H(x) describes the cost in terms of entropy

H(x) = −
∫ +∞

−∞
P (x) log(P (x))dx.

Interestingly, the authors also notice similarities to the k-means algorithm, whose introduction

to this application represents one of this thesis’s core contributions.

This role assignment algorithm carries similarities with the current best-practices of formation

analyses to define a player’s position relative to its teammates instead of deriving absolute po-

sitions on the playing field.

The authors [12] combine general match statistics, ball-occupancy metrics, and formation estima-

tions to form the input for their classification task to blindly determine a team’s identity entirely

based on tracking and match event data. The results reach an overall accuracy of 70.38 %, with

most impact stemming from the formation information (67.32 %). This significance in predictive

benefit corresponds strongly with this thesis’s primary motivation: formations are an integral

descriptor of a team’s core strategy because they quantify how teams move collectively.

Similar work describes dynamic role identification given an entire season of soccer tracking data

for one team [11]. The authors argue that current team analyses lack the contextual information

for meaningful interpretation of the work. While assigned player positions attempt to alleviate

this tagging misalignment, the information is often lost when players switch assigned positions

halfway through a match. Therefore, comparisons by assigned positions become challenging.

8 Kullback-Leibler Divergence, also called relative entropy refers to a standard measure of the difference

between two probability distributions. Applications span as wide as time-series analyses, statistical model

comparisons, and quantifying entropy in information systems.
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The canonical problem states that a given player’s x-, y-coordinates determine a fixed identity,

which remains unaltered throughout the match. This approach leads to processing- as well as

interpretation-bottlenecks. Therefore, the authors introduce the notion of formation as a fixed

set of roles that whatever player can occupy - the roles remain fixed, but the players are allowed

to swap roles. A permutation matrix, minimizing the total cost to fill a period’s formation,

solves this assignment. The algorithm begins from the first frame and initializes the roles’ dis-

tribution with the players’ actual positions. Mining multiple player trajectories remains one of

the main challenges of analyzing team behavior, which leads to a sparse corpus of formation

research compared to individual players’ movement analysis. Adjacent efforts [92] combine

all the individual trajectories into an aggregate trajectory, utilizing time warping9 techniques,

either for basketball [15], or American Football [78]. As discussed above, the authors proceed to

compare the overlap of the individual role probability functions with the team’s and solve the

minimum entropy data partitioning problem10 with the Kullback-Leibler divergence. Solving the

expectation-maximization procedure, the authors identify clusters based on the player’s roles,

which allows for data visualization applications (pairing key events and the role) and effective

event segmentation to distinguish team behavior based on strategic decision-making. This pa-

per [11] represents the first effort to separate a match distinctly into segments, here five-minute

segments, which stands in contrast to the separation between halves. Their results show how the

midfielders––most notably the left and right-wingers and the two central midfielders—exchanged

positions throughout the match. Absolute position calculations lose this notion [44]. Bialkowski

et al. [12] extend this approach to a separation between in possession and out-of-possession com-

parisons. The authors conclude that out-of-possession formations tend to be more expansive,

but that especially a more detailed analysis regarding the field’s location offers subtle insights:

intuitively sound, teams move towards a more aggressive structure approaching the opponent’s

goal.

Ma [37] provides one of the most recent contributions to the literature of formation analysis. It

utilizes the formation definition of Bialkowski et al. [11] to define roles for players and conse-

quently their spot on the field and measure adherence or variance from that formation at specific

time-intervals. The paper outlines the advent of models introduced by Fernández et al. [23]11

and Spearman et al. [68], Spearman [67],12 who introduce quantifying goal probability measures

for a given situation.

Spearman [67] utilizes role assignment techniques [10] and also classifies each player into one

of three rows.13 Their data consists of a rich set of 25 frames per second data for 378 soccer

matches of an elite European league. The author performs his disruption analysis by building

9 Dynamic Time Warping describes the comparison of sequential signaling data of different speeds. It matches

the first and last index of the sequences and warps the entire data stream into this new time interval.

10 Roberts et al. [60] offer a detailed explanation of the procedure. However, the basic idea boils down to an

efficient clustering algorithm for high-dimensional data.

11 The authors establish deep-learning techniques which decompose any possession as the sum of expectations for

either a pass, a shot, or a drive.

12 Spearman et al. [68], Spearman [67] infer probabilities for a goal within a highly interpretable probabilistic

framework. It builds on the notion of Field control, which the authors model as the probability for a successful

pass to a teammate. The scoring probability model then uses this probability as its main parameter.

13 Formations are often referred to by three numbers, respectively, indicating the players in a given row. For

example, “4-4-2 “ indicates four backs, four midfielders, and two forwards.
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non-exact windows (a set of frames for an entire possession but which does not necessarily refer

to 180 seconds in length). The results indicate that most subsequent windows do not signifi-

cantly change formations (measured by the Wasserstein distance14 between the formations). A

bootstrapping method allows for constructing a counterfactual “what-if the team had continued

to play their actual formation “measure used as a benchmark. This contribution allows for a

statistical measure to distinguish formations because, as Bialkowski et al. note, many forma-

tions in practice appear quite similar and are easily confused by a clustering approach [10, 11].

The authors note that their metric can enrich event data by highlighting formation changes of

adjacent possession periods.

Bialkowski et al. [9] describe a real use-case of team formations. It addresses the long-held

myth in soccer of the home-team advantage. In a previous paper [36], general statistics address

the same question and indicate a significant difference between possession and shot statistics

for home and away teams. To deepen this approach, the authors utilized their previous role-

assignment technique [10] to analyze formations. Since roles might dynamically change through-

out a match and researchers cannot explicitly infer the formation from the data set, the authors

introduced an expectation-maximization metric paired with the Hungarian algorithm to update

the players’ roles and calculate the previous error assignments. The data is subsequently nor-

malized and averaged to the center of the field to allow for comparability. This approach allows

for a dynamic match summary visualization of formations and statistics of a sliding five-minute

window, which captures the match’s nuances better than current sparse statistics usually pre-

sented at half-time. This technique underlines previous results to strengthen the home-game

advantage: teams tend to play very similar formations away or at home. Their relative posi-

tions move further up the field when at home, indicating more aggressiveness and comfort in

the game. Results might indicate a tendency for strategic goal-setting differences depending on

home or away, i.e., win home games and draw away games.

Shaw and Glickman’s [66] contributions to the analysis of soccer formations are manifold: a

novel approach of defining the relative position of all the players, comparing and therefore clas-

sifying common formations, and providing a match summary outlined along with significant

events during the match.

While Chapter 4 explains the extensions to the authors’ methods utilized in this thesis, the

following paragraphs will provide a short overview of similar work’s [66] core principles. First,

the authors describe each player’s average position to one another during every time frame.

This 10×10 distance matrix (ten field players) allows them to average the relative position to

one another over a pre-specified time interval. The resulting matrix dimensions are still 10×10

but reveal the players’ average position to one another. The next step includes defining the

most common third neighbor of all players as the centroid of the formation and iteratively de-

termining the position of the players from this starting point (find the nearest neighbor, then

the nearest neighbor of nearest neighbor, et cetera). Once all these positions are determined,

the resulting formation calculation is re-run over two-minute intervals during which the team

was in possession. While a continuous possession of two minutes is almost impossible in modern

14 Wasserstein distance, also often called earth mover’s distance first introduced in [83] calculates how similar

two distributions are.
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soccer, the authors decide for a different approach: They allow the time slots to potentially

appear at different real times, meaning that every time a team is in possession, the timer con-

tinues to count until a two-minute sequence is reached. All these individual possessions are then

wrapped together to form one sequence. This process repeats until the entire game’s periods

in possession are labeled into two-minute long sequences. The grouping of positions per frame

to positions per sequence introduces more robustness to the formation prediction than previous

approaches. These about 4,000 sequences are then compared using the Wasserstein distance

and clustered agglomeratively within 20 groups. The classifications highlight defensive to of-

fensive transitions (of frequent pairs), overall strategic tendencies, or possible ways to exploit

predictive team formations. Shaw [65] most recently extends the approach to a subset of phases

for the clusters. These phases include phase categories, such as offense vs. defense, transition,

and set-piece phases with then underlying phase types - for example, ball retention, low block,

counterattack, or corners. The categorization of phases is an ongoing problem and currently

still relies on manual tagging by analysts.

The author utilizes a labeled dataset to highlight distinct patterns of formations for various team

progressions over the field. The method allows for measuring formation disruption to indicate

how dangerously a team moves around a goal (by disrupting the opponent’s defensive formation).

The measure is closely related to an approach presented in previous work [41], which quantifies

the relation between space occupation and formation disruption. The authors visualize these

relations in Voronoi Tesselations15 and quantify the relationship loosely with possible extensions

for a more causal research design.

In a final step, the authors derive a Bayesian classification model to label unseen formations into

one of the derived clusters of formations. The resulting matrix consists of a d-dimensional vector,

where d describes the number of clusters—here 20—used as the cutoff to the agglomerative

approach. The probability is calculated as (for more intuition, see Shaw and Glickman [66], or

Appendix C)

p(o | C) ≈ argmax
k

10∏
p=1

∫
p
(
y | kµp,C, k2Σp,C

)
p (y | µp,o, Σp,o) dy,

where µp,C and Σp,C are positions and covariance matrix for role p in Cluster C. µp,o and Σp,o

are the position and covariance matrix for player p in the formation observation o. k is the

scaling factor the authors use to maximize the similarity between formations.

This approach suffers from common limitations to Bayesian models: They assume homogeneous

and continuous distributions for their priors. The prior distribution is inferred from theory,

while the remaining part (the model evidence) counterweights this information to form the pos-

terior distribution and, therefore, the selected model. The authors do not describe parameter

fine-tuning, which solves the model for optimal input assumptions. Furthermore, the proposed

algorithm finds the optimal scaling-factor k, which zooms-in or -out on resulting formations. This

15 Voronoi Tesselations / Graph represent a spacial visualization technique separating space into distinct

geometric figures. This link offers a colorful and illustrative example for different optimization metrics. It splits

a plane into distinct areas, where all points in a given point’s area are closer to their “own “associated point

than to any other point on the plane.

https://en.wikipedia.org/wiki/Voronoi_diagram
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decision results in a trade-off because it loses some of the information contained by the compact-

ness of a formation while it offers more comparability between formations. More poignantly:

A 4-4-2 team structure might be spanning the whole field or the middle third, for which the

implications for a coach vary drastically.

Narizuka and Yamazaki [45] introduce a more subtle approach to cluster formations. The au-

thors describe a soccer formation as an adjacency matrix and utilize Delauney triangulation16

to pre-define common formations, such as 4-1-4-1 or 4-3-3, and subsequently split the results

via agglomerative clustering17 (similar to the methods of previously discussed work [66]) to de-

rive more robust result-clusters. This approach allows for insights into the typical formation

transitions of a team within single games. The most appropriate number of clusters seem to be

around 15-20 clusters, which corresponds to the 20 clusters of previous work [66] (see Figure 3

of the work of Narizuka and Yamazaki [45]). Llana et al. [35] utilize these insights [66] for more

dynamic analysis: Highlighting situations when a pass attacks a defender’s designated zone and

how subsequent movements of defenders compensate for the attack by compromising the origi-

nal defensive formation. The author introduces the notion of zones per player to quantify these

metrics and calculate probabilities for a goal as the cost of a given player moving out-of-position.

Figure 2: Figure 4 of Wu et al.’s paper [88] illustrates the researcher’s formation tool. It introduces

time-series analysis of a single-match, indicating formation changes between the teams allowing for direct

comparison of scientific movement research.

16 For our purposes, a Delauney Triangulation represents the dual graph of a Voronoi diagram. A dual graph

describes a graph with a point (called a vertex in graph theory) for each separate area (also known as a face).

Therefore, one point exists in every distinct subarea of the graph.

17 This clustering approach extends their previous work: Narizuka and Yamazaki [44] introduces the main gist

of the explained methods. However, the assumptions for the approach only allow comparing formations within

the same match. For multi-match analyses, the described clustering extension becomes necessary.
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Wu et al. [88] offer a sibling project to this thesis’s aspirations: build an interactive visualiza-

tion tool to investigate formations. Their result ForVizor introduces extensive insights into the

subtleties of formation changes throughout a game within a single system. The system includes

many alternatives for single-match comparisons and represents powerful tools for detailed inves-

tigation of single-match scenarios.

The authors develop the application in collaboration with sports science Ph.D. students and an

Asian professional head coach while evaluating the tool on two games of the Under-15 Foot-

ball World Championship. Their data-processing pipeline involves a manual tagging of player

positions since an automatic workflow proved problematic. Formations are consequently de-

rived building on the restricted k-means [11]. The segmentation of the data into event-driven

periods finishes the data processing. Figure 2 highlights the tool’s primary possibilities. They

include features that mainly aim towards single-game development and time-series visualiza-

tions. Ideally, this granularity level offers explanations towards formation change or transitions.

Experts evaluated two games, and their particular workflow during the process is described in

detail throughout the evaluation, emphasizing the importance of intuitiveness and the balance

between the information conveyed embedded into a simplistic design. Even though the authors’

research goal seems similar to this thesis’s aspirations to build a visual exploration tool for

formations, the system design proves problematic for practical multi-match analyses for three

main reasons. First, it leverages only single games, focusing on the formation shifts throughout

a single game. Second, the tool does not introduce an intuitive design flow. It appears more

scientifically-driven than with a practical goal in mind. Finally, the data cleaning pipeline builds

on manual tagging, which introduces personal bias and disqualifies the system for larger scaled

data sets.

Bradley et al. [14] provides a compelling use case of formation data in general, which uses

soccer formations as a means to identify possessions and athletic behavior of players, more

specifically, high-intensity sprints during a game. The paper uses tracking data of 153 English

Premier League soccer games, tags formations manually, and researches the effect that different

formations have on a team’s behavior. They found subtle differences among various common

formations (such as 4-4-2 or 4-3-3) for high-intensity sprints while in and out-of-possession but

did not conclude any statistically significant difference between a team’s overall possession. This

work further underlines the demand for a multi-game-system for formation analysis for practi-

tioners and researchers of various adjacent domains (here, fitness and performance research).

Figure 3 visually compares the primary papers discussed in this sub-chapter in the form of a

STAR-report.18 This brief overview highlights the explained formation calculation and the vary-

ing depth of data quality underlying the research. It underlines the field’s novelty with the first

technical papers, introducing algorithms comparable to today’s methods as recently as from the

early 2010s onward.

18 State-Of-The-Art reports are topical narratives that explore the current status of the frontiers for a specific

research field’s methods. Visualizations often accompany these expansive overviews of literature comparing the

discussed papers on relevant key attributes.
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Figure 3: This STAR-report highlights the literature underlying formation research in soccer. It displays

differences in calculation logic and data structure. The research projects are ordered by publication year

in ascending order from left to right.

2.4 Positioning of This Work

This thesis introduces an analysis system that allows novel interaction possibilities for practition-

ers. It extends the most efficient and accurate algorithms to date to dynamically analyze soccer

formations. The system improves algorithmic solutions in previous work [66] while achieving

better forecast results than domain experts. Semantic papers of the field require strong model

assumptions for their algorithms. This thesis alleviates much of the necessary restrictions by

allowing for a data-driven k-means formation assignment, which is ignorant of role probability

distributions [10] or an arbitrary definition of formation centroids [66].

This thesis leverages the visualization-tool aspirations of Wu et al. [88] and extends their am-

bitions to multi-match analyses. Close collaboration with experienced domain experts allowed

for a pragmatically-driven development stage, culminating in an application bridging the gap

between isolated academic research and practical usability. This thesis’s main contributions are

four-fold: first, streamlining the calculation logic alleviates former algorithms’ computational

costs to a fraction and eliminates the need for restrictive assumptions. Second, the system

achieves higher formation prediction accuracy than seasoned experts. Third, the system al-

lows for direct user interaction on a multi-match level, and fourth, the tool’s extendability and

intuition allow it to become a single system to understand soccer teams’ formation behavior.

The employed visualizations mimic a coach’s workflow preparing for an upcoming match and

combine advanced algorithmic accuracy with intuitive readability. Supplementary to iterative

discussions during the development phase, this thesis presents an extensive validation with un-

involved domain experts quantifying the system’s accuracy as more reliable as each expert’s

prediction. It also identifies the potential for further improvement discussed in Chapter 7.3.
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3 Requirement Analysis

We conducted semi-structured interviews to understand better where an information disconnect

exists between the demand for formation analysis and its supply. Iterative interactions with a

professional head coach of a European premier league soccer club clarified the specific needs of

the day-to-day routine within the professional sports realm. The expert proposed design choices

within meetings to mimic best a coaching staff’s everyday routine analysis of formations. Even

though the meetings did not aim towards a specific agenda other than utilizing the unique

insights from this source of professional sports, the questions asked intend to draw a holistic

picture to meet the practitioners’ demands best proactively. Sedlmaier et al.’s [62] nine-stage

approach inspired the general structure of the questionnaire. Generally, the idea of the con-

versations aims to narrow the app design from questions of an open-ended why,19 over a more

specific what20 to, finally, a pragmatic how21 discussing basic application features. Figure 4

illustrates this overarching strategy.

Why?
Importance of formations in 

soccer
- Open ended questions

What?
Aspects of formations that 

interest coaches
- More specific technical 

questions

How?
What features to implement?

- Actual problems that an 
application addresses

Design proposal

Figure 4: The overall structure of the iterative feedback interviews follows a stringent logic from open-

ended questions to more pragmatic application features. This figure illustrates how the questions begin

with the motivational background and end with a wish-list of features that an ideal tool should contain.

The following examples of interview questions mimic this logic.

The scope encompasses weekly brainstorming sessions within the development team (for at least

the first two months of the project), one feedback session with a domain expert, and three vali-

dation sessions, including qualitative feedback. The interviews’ language was German, and the

expert interviews generally lasted between 60 - 120 minutes. The following excerpt represents a

set of representative interview questions from a feedback session at the end of December 2020. A

summary22 of key takeaways from the experts’ responses follow their respective questions. The

19 The causal stage of the questionnaire addresses broader motivations to even consider formations as a valuable

tool to analyze team strategy.

20 This stage inquires aspects of formations specifically that need further investigation.

21 The final stage of the questionnaire dives into the practical features of a tool to facilitate the practitioner’s job.

22 For the sake of brevity, the response paragraphs only summarize critical focal points. The summaries exclude

single illustrative examples without ignoring any significant comments.
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interviewee of this expert session was a head coach of a European first league soccer team. His

additional experience as a professional player and certified analyst makes him extraordinarily

suitable for the system’s qualitative evaluation. His insights, coupled with the additional dis-

cussions, describe the main determinants of the design requirements and feature development

for the web application.

1. Why is the analysis of team formations (own and opponent’s) important for you?

A1: “Formations allow the coach to create favorable situations for the team. Defining

spaces on the field is generally handled by assigning specific formations. The main

determinants of the own team’s formation are the team’s constitution and the oppo-

nent’s formation. Formations offer the team responses to the dynamically changing

situations within a soccer game and, therefore, a toolset that aims to maximize the

chance of success given the own team’s skills.“

2. How do you decide which formation to assign to the team?

A2: “Additionally, to the points mentioned in A1, formations are also strongly impacted

by individual player skill.“

3. How much does the formation depend on the opponent or situation?

A3: “Two distinct convictions of formation derivation dominate the preparation. The one

side prepares its own team’s formations on specific blueprint-situations. Once any of

these most probable scenarios occur, the team will follow a pre-defined match plan.

The other side, while incorporating information about upcoming opponents, might act

differently to seemingly congruent situations. This behavior might allow a surprise

effect and confuse opponents.“

4. What are the main tasks for the coaching team in pre-match and post-match preparation,

especially concerning the formation?

A4: “Besides understanding the specific overall tendencies of a team, the main determi-

nant is to know an opponent’s common formation - and their respective adherence or

variance between formations. This information will then further subset solutions to

the four phases of a game.23 The opponent team’s response to common formations is

also of vital interest.“

5. What general information would help you and your coaching team make better decisions

or reach the same decisions more easily?

A5: ”An objective presentation of information. A wider granularity is narrowed down to a

finer level to allow for the right input given the wide use-cases of such an application.

The program will serve as an additional tool during the match preparation or during

the actual match. While subjective ideas might be biased, a source of objective advice

will prove helpful to find the right action. A valuable extension towards an AI-powered

23 The Four Phases of a soccer match are defined differently across sources, in this correspondence the coach

clusters a match into the team is out-of-possession, the team is in possession, either team is losing the ball

(transition), offensive and defensive set pieces (such as wide goalie passes, corners, out-balls, or penalties).
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recommendation system,24 which will use facts to find the best formation for a given

situation, would further facilitate the job of a coach during these hectic moments

within a game.”

These detailed answers translate into five high-level design requirements, which an application

should adhere to for optimal assistance of a coaching staff’s daily challenges.

� Dynamic access from different locations. The system aims for usability in situations

from locker room preparation to sideline analyses. A simple sharing functionality for a

non-technical audience will offer a smoother acceptance to break existing practices without

any set-up costs. Web hosting of the system will offer the required flexibility.

� Support different analysis-granularities. The specific demands of invested parties

and potential use-cases of a formation analysis tool are too broad to predict. Allowing

an adjustment of displayed information to varying degrees of detail prepares prospective

extensions and provides different use cases an appropriate outlet without over-complicating

a single visualization.

� Analyze specific subsets of information. Formations in themselves are intriguing for

researchers, but coaches need to find a way to win games, which often includes preparing

for a specific opponent or situation. Providing a tool that does not pre-describe an analysis

but offers all the information necessary to conduct their own analysis forms a cornerstone

of the application design.

� Extend easily. The tool will be dynamically reviewed and should allow for the introduc-

tion of new features. As dynamically as the game itself is changing, demands for a proper

analysis tool might shift. Therefore, the addition of aspects as necessary to the existing

application’s logical flow will promise the app’s versatility in the future.

� Communicate results intuitively. While statistical analyses might prove useful as the

foundation to more advanced features of a recommender system, intuitive communication

to a non-technical audience is of vital importance to the tool’s usability. Coaches will show

results to players, scouts, or any other stakeholder. The application should feel native and

organic to the usual communication channels used within these parties while enhancing

the insights.

From these broad principles, more specific and practical design requirements determine the app

layout’s actual decision. Often alternative design choices need to be weighed against one another.

These compromises will need to form a coherent experience and follow an overarching flow. That

is where the more specific design requirements come into play. These propositions are structured

into three groups, Algorithmic, Search-/Subsetting, and Visualization Requirements.

24 Recommender systems are most prominently applied in commercial applications to give the user the most

appropriate recommendations given the history of previously selected items and similar search histories/user

profiles. Prominent examples are item recommendations on Amazon for online shopping or movie/ series

recommendations on Netflix for video streaming.

www.amazon.com
www.netflix.com
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A P Algorithmic Requirements define necessary information and performance features that

allow practical usability to deliver the critical insights by the user.

A1 Correct formation calculations build trust in novel methods and offer information that

the user requires to make better decisions. The application will improve with more data,

and extensive evaluations check the calculated results with gold-standard expert opinions.

A2 Inference about individual players is important to communicate the results effectively.

Formations are crucial, but it is the individual players that need to adhere to the match

plan. If the formation algorithms label individuals, coaches can translate the information

to personal feedback.

A3 Fast algorithmic performance allows the application to scale with more data. If single

derivations take hours, the app will lose its practical value to the user. The algorithmic

choices should mimic the system’s vision to grow more accurate and instructive with more

data.

A4 Derive calculation (in)accuracy will be vital for the effective communication of the

results to non-technical audiences. The system’s focus is to instruct and support, not

replace the experts on the sideline. Therefore, a real measure of approximation validity

becomes imperative for the user’s decision-making.

S ü Search/Subsetting Requirements define a set of options to efficiently find the infor-

mation a coaching staff requires to deduce valuable information regarding formations.

S1 Intuitive design choices follow the analog line of questioning of a coach. Usual workflows

that practitioners use, regarding formation analysis, establish the order and the granularity

of tabs within the application.

S2 Limitation to relevant options allow the design not to become cluttered with too many

drop-downs and selection boxes. By focusing on the most important questions, coaches

can ask vital questions quickly without losing the benefit of advanced analyses.

S3 Iterative subsetting mimics the complex scenarios that offer a real insight for match

preparation. Often not only the formation of a given opponent but of a given opponent in

a specific situation within one of the four-match stages displays the level of detail necessary

to answer advanced questions. To bridge the gap between a simplistic design while offering

enough detail to ask the important questions becomes of utmost priority.

S4 Easy extensibility introduces the notion of a system that grows organically and extends

as necessary. Possibilities to intersect a formation analysis application with adjacent tools

will offer a holistic picture to describe soccer success quantitatively.

V ÿ Visualization Requirements define the scope of responsibilities that the result presen-

tation entails. Choices are based on these granular resolutions to provide a clear and coherent

underlying logic to how the coaches interact with the application and convey its knowledge.

V1 Familiar result presentation patterns include visualizations, which feel comfortable or

convenient. The application users will not be technical statisticians but soccer coaches and

scouts; therefore, a translation of mathematical concepts to native soccer communication

channels offers an easier transition.
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V2 Clear separation of concerns determine how many aspects of a given analysis are

bundled together in one visualization or tab. The app’s design needs to bridge the gap

between disentangling users’ concerns and maintaining a coherent wholeness to describe

complex formations. While some questions might demand isolated information, others

require context to offer any practical insights. A design choice to represent this ambiguity

will offer more organic incorporation of the application into its user’s daily workflow.

V3 Fast access and performance are crucial for the user experience. Coaches will not have

the time or patience for data to be loaded into the app or have calculations run for minutes

before any results are accessible. A smooth and immediate front end user-experience needs

to mimic the work a coach can do on a whiteboard in front of a team. A web hosting of

the application will achieve the best trade-off between fast performance and easy access.

V4 Comparability of different queries affords the user to deduce more complex scenarios.

By offering the coach options to compare different teams or compare a subset of situ-

ations and their formations to a benchmark, deviations from formations might become

transparent and introduce more tactical insights for decisions to react.

The following two chapters will outline solutions that are determined by these requirements de-

rived from expert opinions. While Chapter 4 will address the P Algorithmic Requirements,

Chapter 5 demonstrates how the app focuses on the ü Search/Subsetting Requirements

and the ÿ Visualization Requirements.

4 Innovating Formation Calculations

This chapter outlines the different required steps for the actual calculation of the formations. It

explains the implemented mathematical derivations, expands on the rationale for using specific

algorithms, and gives the technical background on the project’s overall strategy. Consequently,

this chapter offers a background on the system’s solutions to the algorithmic design requirements

laid out in Section 3.

The first two sub-chapters (Chapter 4.1 and Chapter 4.2) provide the technical background to

first retrieve formations from simple location data and then group and compare them. Chap-

ter 4.3 explains the mechanisms underlying scaling formations based on their compactness. Once

the technical background is transparent, the chapter outlines actual data structures, and nec-

essary assumptions in Chapter 4.4 continues. The fifth sub-chapters (Chapter 4.5) defines the

necessary pre-processing steps and assumptions to allow for a meaningful interpretation of for-

mations. The thesis attempts to be precise enough in its instructions to allow for a replication

of the analyses.

4.1 Formation Calculation

A formation describes a constellation of all player locations at a given time in team sports. In

soccer, three to four numbers describe these formations listing the number of players in their

respective rows, starting with the most defensive line. For example, 4-4-2 indicates four backs,

four midfielders, and two forwards.
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Formation calculation encompasses several assumptions to make, such as normalizing locations,

describing the compactness of formations, and how to group time frames to infer robustness

of the player constellations. This thesis lies at the intersection of theoretical and empirical

research, which underlines the necessary heuristics used, further described in Chapter 4.5. All

these assumptions are necessary to comply with, first and foremost, P A1 Correct Formation

Calculations, as well as P A3 Fast Algorithmic Performance .

Since formations describe a collective movement over time, the calculation needs the actors’ x-

and y-coordinates grouped for a relevant period. Chapter 4.5 further extends on the time-spans

intuition utilized for the calculation. With a length of two-minute segments of one team, either

in possession or out-of-possession, a single sequence to lay the basis for a single formation cal-

culation contains 24,000 (120 seconds x 10 frames/second x 20 players) individual observations

(tuples of x-, y-coordinates).

-1

1

Point positions: 

A1: (-1, -1), B1: (-1, 1), C1: (1, 0)

A2: (-0.5, -1), B2: (-0.5, 1), C2: (0.5, 0)

1-1

B1 B2

A1 A2
-1

1

Average positions: 

Aaverage: (-0.75, -1), Baverage: (-0.75, 1), Caverage: (0.75, 0)

1-1
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C2 C1 Caverage
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1

Point positions: 

A1: (-1, -1), B1: (-1, 1), C1: (1, 0)

A2: (-0.5, 1), B2: (-0.5, -1), C2: (0.5, 0)
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A1 B2
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1

Average positions: 

Aaverage: (-0.75, 0) = Baverage: (-0.75, 0), Caverage: (0.75, 0)

1-1

Aaverage / BaverageC2 C1
Caverage

Figure 5: The illustration depicts a common problem of formations, where players might change positions

throughout the calculation interval. The example builds on three players (here, A, B, C) over two time-

intervals (t1 and t2) but organically extends to more complex scenarios for real data. The top part

demonstrates how the calculation will correctly derive the average calculations for a toy 2-1 formation

as long as the players are not changing their roles in the formations. The resulting average positions

(top right) conclude a 2-1 formation with seemingly correct locations. The problem arises in the bottom

scenario, where players A and B switch their position between t1 and t2. Their average arithmetic location

concludes that they played on the same wrong position on the field and that the resulting formation forms

a 1-1 structure.
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Finding these players’ average position represents a major challenge to define a formation/sequence

metric further. Players might change their role in the formation without altering the overall

formations. By just averaging over the arrays of positions, one might miss this movement and

find a nonsensical result position for a player. Figure 5 illustrates the problem visually.

This complication of incomparable location arrays arises when the players switch roles or if

the arrays within the data are unsorted. So the player at index one might not correspond to

herself at index one at another time frame. A solution lies in the implementation of the Hun-

garian algorithm [29]. For a detailed explanation of the underlying mechanics, please refer to

Appendix B. The calculation will use a 10×10 distance matrix of every field player to every

other field player (with the diagonal filled with zeros describing player distances to themselves)

to find an overall optimal25 assignment. The problem with this approach, however, lies in its

computational efficiency. While effective implementations of the Hungarian Algorithm run in

O(n3), this calculation needs to run for 2,400 frames of a two-minute sequence. Every individ-

ual assignment results for an array length of n=10, in 1,000 calculations (103) and, therefore,

1,000×2,400, or 2,400,000 calculations for a single two-minute sequence. Since every game con-

sists of approximately ten offense sequences and, consequently, ten defense sequences, the total

number of calculations will approximate to 2,400,00 × 10 sequences × 2 modes (offense/defense)

× 2 teams = 96,000,000 single calculations per game. This number is not feasible for an efficient

system to offer match insights immediately (see algorithmic requirement P A3 Fast Algorith-

mic Performance and visualization requirement ÿ V3 Fast Access and Performance).

This optimal assignment approach lies at the heart of adjacent work [10], which introduces the

notion of roles and minimizes the total entropy as explained in Chapter 2.3.

Shaw and Glickman [66] propose an alternative algorithm. The authors provide techniques to

extend relative player positions to one another in the following steps:

1. Find the relative distance matrix of all players to one another (t, 10, 10) for the ten

field-players for every time frame t in the sequence. In our example, for two-minute-long

sequences, this calculation translates to a (2400, 10, 10)-dimensional matrix.

2. Calculate the average distance matrix for the players to one another, which builds the

average of the 2,400 time frames resulting in a (10, 10)-dimensional matrix.

3. Define the densest part of the formation as the centroid, which Shaw and Glickman [66]

define as the player who is the most frequent third nearest neighbor.

4. Set this player’s coordinates to (0, 0), which usually translates to the field’s center circle.

5. Derive the relative position of this player’s closest neighbor as the distance vector from

the player. Then re-define its location in terms of the location from the center of the field.

6. Continue with step five by continuously determining the closest neighbor’s position relative

to the currently iterated player’s position, ignoring already assigned players until all player

positions are derived.

25 Optimal refers to the assignment with minimized total cost.
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This approach addresses some problems of normalization of the locations on the field. Two

otherwise identical formations might be confused to be distinct if they are not normalized and

appear in different parts of the playing field. This approach describes another trade-off similar

to the compactness measure k (see Chapter 2.3 and Chapter 4.2). It weights comparability

against losing a sense of the exact location formation occurs on the field. The result formations

center around their centroid in the middle of the field and stretch for maximum comparability.

This thesis introduces an alternative to the proposed algorithms. It solves the optimal assign-

ment problem of defining roles [10] and the downsides of absolute positioning on the field [66]

by utilizing the simplicity of k-means clustering to the locations on the field.

The simple and efficient calculation boils down to four high-level points:

1. Define two-minute-long sequences of in possession or out-of-possession time.

2. Normalize the position per two-minute sequence.

3. Find the average position per sequence.

4. Subset the data to find the sequences relevant for a specific query and find the average

formation for this data via k-means clustering.

The remainder of this chapter details each high-level point’s approach and explains the necessary

assumptions and algorithmic shortcuts to allow for an accurate yet fast derivation of formations

from two-dimensional spatial-data.

Step 1: Define two-minute sequences:

The thesis differentiates between offense and defense possessions, per team, per half, which

allows for a more complex strategic analysis of a team’s behavior when in possession versus de-

fending. This differentiation leads to the slicing of periods, translating into two-minute periods.

For example, to find a two-minute sequence, a 50 second period from match-minute one (real-

time) might add the next time the team is in possession in minute three of 70 seconds to form a

total of 120 seconds in possession and therefore the first offensive sequence. A team’s possession

determines the next period that eventually adds up to two minutes in total. Possessions change

rapidly during any given match, so finding a continuous two-minute window is nearly impossible.

Figure 6 explains the process visually for two arbitrary teams.

The algorithm discards meager possessions under five seconds since they might introduce un-

necessary noise into formation analyses while teams might be scrambling for the ball.

Step 2: Normalize the positions:

Location normalization becomes necessary to compare similar formations that do not occur in

the same field region. The center of a team’s structure shifts to the center of the field, and

therefore every point moves along the parallel distance vectors between the formation’s and the

playing field’s center. Figure 7 provides a graphical illustration of this processing step.
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0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Team A’s perspective Team B’s perspective

2 mins of possession 2 mins of possession 2 mins of possession

In possession Out of possession
Match time (mins)

Figure 6: Separate periods of either in possession (for offensive) or out-of-possession (for defensive) times

form two minute windows, over which to average the position for formation analyses. The mirrored view

illustrates the binary nature of a two-team game.

Step 3: Find average position per sequence:

Every sequence contains 120×10-time frames, therefore 1,200 ten-dimensional arrays (for the

ten players) per team. To find the average position per team, we can use the arrays’ ordered

nature per sequence. This structure means that the player at frame one, index one, corresponds

to the player at frame two, index one. A simple mean over the x- and y-coordinates displays a

player’s average position throughout a two-minute segment. Challenges of finding the average

formations of players who might switch roles (see Figure 5) are alleviated because empirical

evidence supports that players will not change roles frequently within two-minute segments.

While this complication might impact a single sequence, the entire data set subset (see next

point) often includes hundreds of sequences, which cancels out the noise. The top of Figure 5

demonstrates the averaging of positions per sequence for an exemplary three-player setup with-

out role-switching.

Step 4: Find the average position per subset data:

The mean-position calculation’s main challenge is to derive the average formation of a specific

subset of sequences with unordered arrays. If we just ignored the ordering, the average calcula-

tion will fail to detect players’ switching roles and substitutions, which throws off the positions’

order and leads to nonsensical formations. To define the formations without any required as-
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(a) Find the central point of the formation (b) Calculate distance vector v to field’s center

(c) Add distance vector v to every point (d) Formation is centered around middle circle

Figure 7: This illustration depicts the position normalization method. First (a), 0.5 of the minimum

and maximum x-/ y-coordinates labels the central point of the formation. Second (b), the distance vector

v describes the relative distance from the this average point to the center of the field (middle circle).

Third (c), the distance vector v shifts all relative positions by simple vector addition. (d) shows the final

formation once it is centered around the middle circle.

sumptions for expected formations, point distributions, or accuracy limitations, a k-means26

clustering algorithm will find the ten centroids for any cloud of points provided by the number

of sequences that fall into a specific use case category. Figure 8b highlights this procedure for a

random offensive sequence, which lies at the heart of most average spatial calculations through-

out this thesis.

The use cases of subset data could contain all sequences of a specific team, or a specific team-

opponent combination, or of match situations, in which a team was ahead/behind/even, et

cetera. It is essential to state that every clustering algorithm introduces unique trade-offs for

specific use cases. The advantages of k-means offer robustness to outliers and fast performance,

which overshadow its tendency to convergence at a local optimum. The algorithm affords the

derivation of which player is most likely to have played on which position, which is a direct

implementation of algorithmic requirement P A2 Inference About Individual Players.

Chapter 8 discusses some of these challenges and trade-offs with potential alleviations in exten-

sion to this thesis.

26 The k-means clustering algorithm provides an unobserved and iterative approach to determine clusters of

beforehand unseen data. It begins by moving a pre-determined number of centroids (k) to classify the clusters’

observations closest to them, moving the centroids iteratively, and reclassifying the points to find the minimum

squared Euclidean distance. This article or Appendix A provide a more detailed explanation.

https://en.wikipedia.org/wiki/K-means_clustering
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1/8/2021 python - multidimensional confidence intervals - Stack Overflow

https://stackoverflow.com/questions/12301071/multidimensional-confidence-intervals 4/7

answered Sep 7 '12 at 15:39

Joe Kington
229k 60 540 440

 –  
 

nice, thanks for the answer. I hope I got this right: Assuming a multivariate normal distribution, one can
simply take the eigenvalues and the eigenvectors to calculate the ellipses. Raphael Roth Sep 10 '12
at 13:15

 –   
unfortunately, matplotlib patches cannot be drawn with logarithmic axes (or at least not correctly) as I
need to .... why is life so complicated? Raphael Roth Sep 10 '12 at 13:51

1
 –  

@JoeKington Don't we need to refer to the chi-square probability distribution table to find out our ,
i.e. whether be it 68%, 90% or 95% ?

nstd
Srivatsan Jul 5 '15 at 10:28

1

 –   

@ThePredator - If you're using it as a test, yes. (In other words, is this a different/same distribution than
another one at p confidence level?) If you're simply using it as a description, then no. The confidence
that you're correctly estimated the standard deviation and mean from the number of samples that you
have is an entirely separate question, though. Joe Kington Jul 5 '15 at 22:15

2

 –  

@ThePredator -  returns the full angle (can be in any of the 4 quadrants).  restricts
the output to quadrants 1 and 4 (between -pi/2 and pi/2). You may notice that  takes a single
parameter. Therefore, it can't distinguish between angles in quadrants 1 and 4 and a similar angle in
quadrants 2 and 3. This is a convention that's shared by many other programming languages, in no
small part because C defines them that way.

arctan2 arctan
arctan

Joe Kington Jul 6 '15 at 11:44
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(b) K-means for single sequence

Figure 8: Illustration of the main parameters calculated for each average position per subset of data.

For the sequence data this might refer to a two-minute sequence, while for conditional or event-driven

subsetting, these time periods might be averages across multiple matches modes and game situations.

Figure 8a highlights how spatial positions per time frame are then utilized to find the average area a

player moved over an entire time aggregation. Figure 8b shows the result of the final centroid location for

players, which then the front-end interprets as the average position for the given player.

Higher statistical moments of distributions explain aspects that a simple mean-calculation27

might leave out. The spread (variance, or second statistical moment), skewness (third statistical

moment), or measures of outlier-relevance (kurtosis, or fourth statistical moment) offer delicate

insight into the data at hand. In this case, the deviation from the average position, measured by

the variance, is instructive to display the degree and direction of player movements from the mean

position. Since the point distributions follow a Gaussian distribution, the description of the first

two statistical moments, fully describes the distribution.28 The illustration of error-ellipses will

help to visualize this deviation. The algorithm calculates a height-, width-, and θ-parameter

to indicate a player’s general movement around its mean. This visualization allows grasping

a predefined standard-deviation ellipse around the mean to, first, hint at the convergence of

the data at the mean spot and, second, allow for an interpretation of how strictly a given

player remains at her assigned position and where she deviates. The calculation follows a simple

derivation of the standard deviation and the covariance matrix calculation of the points averaged.

The described formulas for width w and height h are

w = 2× n× σ ×
√
λ1,

h = 2× n× σ ×
√
λ2,

where (λ1, λ2) are the eigenvalues of the covariance matrix of the point data; n is the standard

deviation set for the ellipse (e.g.: n=2 to find the two-sigma ellipse, which is used in these

illustrations). This calculation solves algorithmic requirement P A4 Derive Calculation

(In)accuracy .

27 The mean of a distribution represents its first statistical moment.

28 The probability density function of a Gaussian distribution is described by f(x) = 1

σ
√
2π
e−

1
2 ( x−µσ )

2

, with µ as

the mean of the distribution and σ as its standard deviation. Since σ2 equals a functions variance, i.e. its

second statistical moment, the probability density of a normal distribution is fully characterized by its first

(mean) and second (variance) moment.
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4.2 Clustering Formations

The highest level analysis of this thesis is to find underlying patterns for all formations of

the data. For this purpose, a similarity measure called the Wasserstein distance affirms how

different two positional distributions are. Inspired by Shaw and Glickman [66], a two dimensional

Wasserstein (Wasserstein-2) metric [58] will be adopted to cluster formations. In line with

previous work [66], we assume the distributions of formations to be Gaussian, which simplifies

the calculation. The square of the Wasserstein metric simplifies to

W (µ1, µ2)
2 = ‖m1 −m2‖2 + trace

(
C1 + C2 − 2

(
C

1/2
2 C1C

1/2
2

)1/2)
,

with means m1 and m2 and covariance matrices C1 and C2. For a more detailed derivation,

refer to Appendix D.

Shaw and Glickman [66] describe the Wasserstein metric eloquently as:

“For point particles, the Wasserstein distance is simply the square root of the L2

norm of the difference between the means. More generally, the Wasserstein metric

is a solution to the optimal transport problem [84], i.e., an estimate of the cost of

moving from one distribution to another.“ (Shaw and Glickman [66], page 6)

This characteristic earned the Wasserstein metric the more poignant name of earth mover’s

distance, which imagines distributions as a pile of earth and the distance equal to the work of

changing one pile to the shape of another. Additionally to this quick introduction, Appendix D,

and more visually, Figure 48, attempt to provide a general intuition.

Once distributions are comparable, an agglomerative clustering29 approach pairs similar distri-

butions together.

By utilizing this metric, the clustering’s objective function to minimize becomes the square sum

of the Wasserstein distances

W 2
total = min

∑
i

∑
j

DijXij ,

where Di,j is the cost (square of Wasserstein distance) of matching player i in formation one to

player j in formation two, and Xi,j is a player-player allocation matrix, in which each element

is equal to one if player i is matched to player j, and zero otherwise.

4.3 Scaling Formations

For certain aspects of the web application, training the scaling parameter k comparably im-

plemented approaches in [66] might be the preferred method. This training allows for better

29 Agglomerative Clustering describes one of the two major branches of hierarchical clustering techniques. Its

“bottom-up“ logic begins with every observation as its own cluster to hierarchically group similar observations

together until only a single cluster remains. The user can then choose via statistical inference or visual inspection

of a dendogram the most effective clustering granularity.
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comparison since the algorithm finds the k-parameter that stretches or shrinks formations in

their compactness to make them most comparable. For certain aspects of user interaction that

do not build on automatic comparisons, scaling of the formation will become a crucial feature

for the user to interact with the data. Therefore, an important addition to the cluster compo-

nent illustrations represents either stretching out the data over the entire field or scale it by the

most extreme points of the entire data set. Figure 9 exemplifies the approach for two common

formations with hypothetical data points.

Intuitively, the algorithm calculates two alternative mappings of the visualization points: either

use a formation in isolation as a reference. Its most-left point scales to the most-left point of

the displayed domain, its most-top point to the most-top of the field, et cetera. This approach

stretches the formation, regardless if it is a comparatively dense or wide formation. The al-

ternative scaling dynamically programs the visualization domain based on the entire range of

values in the subset data. The most-left point on the domain corresponds to the overall data’s

smallest x-value, but not necessarily of the currently chosen sequence. This scaling shrinks most

sequences because the extreme points of all formations dominate the visualization perimeter.

This feature might hide some details about players’ exact position in relatively dense formations

but allows for a compactness comparison between formations throughout the full data. Figure 9

exhibits this relationship between two scaled formations. It displays the convex-hulls30 of the

formations. In this example, red stands more compactly than blue, which remains invisible if

the stretched scaling option is chosen (wider and lighter formations).

4.4 Data

This thesis analyzes a large dataset to address an ambitious research question. The data contains

mainly meta information of matches in a top-European soccer league, most notably the players’

positions and the ball (2D, x- /y-position on the soccer field) and relevant events. The position

data is available in 100-millisecond resolution. Event data, in general, usually describe special

situations around the soccer ball. These events include, for example, when a pass, a shot, an

offside, or a foul occurred. The information is stored in a PostgreSQL31 database, maintained

by the data analysis and visualization group at the University of Konstanz.

The following list provides useful general facts about the data. The data contains:

� 101 matches of the 2018/2019 and 149 matches of the 2019/2020 season for a total of 250

matches.

� 328,930,768 positions in the tracking table.

� 613,378 events in the events table.

� ten additional data tables (for a total of twelve tables in the database) to enrich the

tracking/event data with, for example, player-specific information (players table), location

data (stadiums table), or general team meta data (teams table).

30 A Convex-Hull represents the smallest closure—the area around the data points for 2D cases—that contains

all points.

31 PostgreSQL is one of the most popular providers of SQL (relational) databases. See this link for their official

website.

https://www.postgresql.org/
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Figure 9: The two scatter plots exemplify common 4-1-4-1 (left) and 4-4-2 (right) formations and

how their visualization is impacted drastically from the respective data domain chosen (Both graphs show

the formations in different directions, first from left to right, the second one opposite to that). While an

absolute domain, incorporating the entire datasets’ values scales the relative formations according to their

compactness, the relative scaling might allow for a better comparison of actual formations regardless of

the compactness measure’s noise. The numbers are fictitious but resemble real data domains from the

actual data. We can see that the right formation lies inherently closer to the actual maximum for the field

layout, so the data is not as thoroughly stretched compared to the red data, which represents a naturally

denser formation and therefore experiences more stretching across the field.

The thesis builds heavily on deducing meta information, such as the score or possession from

the events data table. Therefore, a more thorough description of these events’ nature will help

the reader gain a better understanding of the techniques employed. Chapter 2.1 offers some

general insights, and the following definition will describe the specific event data used in this

study. This description borrows from a previous description of the dataset [69]. Since the 2020

analyses of the dissertation [69], the event database incorporates 31 but 46 event types. This

thesis introduces two additional event classifications to, first, better capture the additional event

types, and, second, allow for an overall finer event classification granularity:

� Rule-induced events are events that occur as a result of the match rules. For example, if

the ball passes the sideline of the soccer field, it has to be thrown in again by the opposite

team.

� Events tagged with prosecution indicate penalization of illegal behavior by the related

player(s).

� Player interactions with ball contains events that happen when a player is touching

the ball. Almost every event that gets tagged falls under this category besides yellow and

red cards, the end of halftime, pure ball interactions, and a substitution.
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� Ball interactions with environment are situations in which, for example, a deflection

of the ball, without a player directly intervening, occurs.

� Player interactions without ball marks a small cluster of events, where either multiple

players move together (maybe for offside or a foul situation) or interaction of a player with

her environment.

� Events that interrupt the match get marked as gameplay interruption.

� If an event has a direct relation to scoring (e.g., a shot on the goal), we mark it as scoring

related.

This categorization gives rise to Figure 10, an extension to the existing previous version of

this figure (Stein [69], Figure 2.1.1) displaying all included events categorized into the earlier

mentioned groupings.

4.5 Data preparation

The last remaining step before feeding the data into the formation algorithms is to pre-process

it and reshape its format to derive meaningful information. The data itself only provides in-

dividual positions for a given time frame in a two-dimensional (x-/y-coordinates) space. How

these individuals react in comparison to one another is not explicitly included within the data.

This chapter will offer a transition from the first part of the methods chapter, which explains the

algorithmic logic over the database’s data structure to the actual data utilized for the formations.

Data querying:

A database table called tracking stores the complete tracking information, meaning the x-/y-

coordinates for a given player for every tenth of a second for the majority of matches of the

2018/2019 and 2019/2020 seasons of an elite European soccer league. This table provides the

core information of this thesis’ analysis. However, for several reasons explained in detail in

this chapter, we will need to enrich it with event data. The events table highlights a variety

of crucial interactions during a game. It contains the actorid, i.e., the unique player identifier,

for an event, such as a pass, a shot on the target, or a foul, or no actorid for events that are

unassignable to a specific player, such as match-start. The event information also includes the

exact time of the event in hundredths of a second. The query first retrieves both tables indi-

vidually and subsequently merges them to subset and enrich the data, before adjacent tables,

including player details,32 match information,33 and team information34 enrich the raw data.

Only information for the ten outfield players, excluding the goalkeeper, is retrieved, and the

thesis excludes matches with a suspension due to a red card entirely.35 This heuristic allows

for an additional layer of security against wrongly incorporating formations with less than ten

field players into the classification. The data also corrects the direction of positions (from left

to right, or vice versa) to ensure comparability between home and away games and directional

changes between first and second halves. Finally, all games’ information is queried for a loop

32 Firstname, last name.

33 Home and away team, plus who started on which side.

34 Full team name.

35 In comparison to just excluding the sequences, during which less than ten field players are playing.
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Event Type Description

Foul Penalty Free kick on the goal defended only by the goalkeeper

Foul direct free kick Free kick that is allowed to be directly shot into the goal

Foul indirect free kick Free kick that is not allowed to be directly shot into the goal

Foul throw in Throw in that is not correctly executed

HalfTime Start First or second half starts 

Offside Player is in an offside position

Out for goal kick Ball passes the endline after an opponent touched it

Out for corner Ball passes the endline after a player from the own team touched it

Out for throw in Ball passes the sideline of the soccer pitch

Goal Awarded when the whole of the ball crosses the whole of the goal-line

Own goal Awarded when the whole of the ball crosses the whole of the goal-line of own goal

Shot on target Any shot attempt that would or does not enter the goal if left unblocked

Shot not on target Any shot attempt that would or does enter the goal if left unblocked

Chance Potential for shot on goal situation

Pass Ball touch from one player with direction towards a team mate

Reception Ball touch made by the player after receiving it from another player  

Clearance Hard ball touch where the player tries get the ball away from the current zone on the pitch  

Hold of ball Play action when the keeper takes the ball with his hands without danger  

Running with ball Used by the player to move the ball around without passing it to another player  

Cross Hard ball touch where the executing player is positioned in the final third of the field  

Neutral contact Characterized by ball touch which is difficult to control  

Pass assist The last pass to a teammate in a way that leads to a goal

Cross assist The last cross to a teammate in a way that leads to a goal

Catch Keeper catches the ball and hold it in his hands on a dangerous situation  

Catch drop Keeper does not manage to hold the ball but lets it bounce of the hands again  

Drop of ball Keeper drops the ball after having caught it or holds it in order to play the ball  

Punch  save Keeper punches the ball with his hand away

Punch Keeper punches ball

Diving save Keeper jumps to a side to catch the ball

Diving Keeper dives for ball

Neutral clearance save Keeper kicks off ball to avoid goal

Neutral clearance Keeper passes long pass to field players

Catch save Keeper catches the ball in mid-air without deflection.

Catch drop save Keeper drops a caught ball

Drop kick Kicking a ball that is dropping to the ground as it starts to bounce up  

Yellow card Displayed by referee to indicate that a player has been cautioned for a foul

Red card Displayed by referee to indicate that a player has been dismissed from the field for a foul

End of Half First or second half ends

Interruption Any other form of interruption

Substitution Replacing one player with another during a match

Modification of position Player repositions with or without ball

Right goal post Ball hits a right goal post

Left goal post Ball hits a right goal post

Crossbar Ball hits a crossbar

Block Ball hits player in the form of a deflection

Other obstacle Ball hits any other obstacle

applies always optional

Figure 10: Event-types grouped into seven categories and into ’applies always’ and ’optional’ subgroups.

This figure extends Figure 2.1.1 in Stein [69] by introducing two additional event-categories and updating

the total number of labeled events from 31 to 46.
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over a team’s full game list. The query includes goal information from the events table and the

location (stadium name) to allow for prospective subsetting of conditional and event-driven anal-

yses (e.g., if a team was ahead or behind) and graphical illustrations for front-end functionalities.

Data processing:

Data subsetting for any meaningful interpretation requires cleaning the raw data first. We need

to know when a team is in possession and find instructive time frames to bundle for formation

calculations.

The first step includes finding the active times for a match: every game in soccer includes

so-called dead periods, during which the clock keeps running, but the actual match play is in-

terrupted. Examples include a free-kick, the kick-off, or just a throw-in event. To clean our

analysis of formations during these periods, we need to define a metric to assess active periods

during a game automatically. The event data will help find these active times: the events table

includes information about an event’s start and end of a phase.

The next crucial step is to determine who is currently in possession of the ball. A naive approach

could label a team in possession if its players are closest to the ball. This heuristic leads to mas-

sive complications since a pass usually passes by players closest to the ball who are not directly

in possession. We use the event data to find events that uniquely identify an actorid for a given

event and determine the possession from the event’s nature. For example, a pass by a specific

actor allows us to know that, at that moment, the player had the ball. Unless another event

occurs, the team will remain in possession. Therefore, we can deduct sequences of times for a

given team in possession—here, a heuristic for the binary nature of possession in a two-team

game helps—if one team is not in possession, the other one, by assumption, is in possession. By

translating these sequences to the corresponding tenth of a second, we can merge the possession

information into the enriched tracking data set. This logic excludes certain events from any

inferential value to the possession heuristic. For example, a yellow card can occur to any player

on the field without offering insights on which team is in possession. The excluded events are

(see Figure 10 for the full list of events): 1. Modification of position, 2. Catch drop save, 3. Catch

drop, 4. Red Card, 5. Yellow Card, 6. Diving Save, 7. Punch Save, 8. Foul - Indirect free-kick,

9. Diving, 10. Foul - Direct free-kick, 11. Substitution, 12. Right goal post, 13. Left goal post.

Possessions of less than five seconds are removed from the sequence calculation. This processing

leads to, on average, about four to seven two-minute sequences per half for an average total of

about ten sequences per team per match. It is crucial to notice that this number only includes

in possession sequences. Given the binary nature of soccer (if one team attacks, the other one

automatically defends), the total number of sequences per game totals about 20 sequences per

match, per team, or 40 distinct formation sequences per match. This number passes a first sanity

check of overall active time aligning closely with half the total time of 90+ minutes of play (ten

offensive + ten defensive two-minute segments equal about 40 minutes ≈ 1
2 ×90 minutes). Shaw

and Glickman [66] arrive at a similar value of sequences per team.36

36 The authors’ dataset of 100 games leads to ≈ 4,000 formations, which agrees with our 40 sequences per match.
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5 A System for Multi-Match Formation Analysis

This chapter describes the actual system implementation to solve the shortcomings of previous

solutions. It will shadow the search/subsetting and visualization design requirements of Chap-

ter 3 and connect the data available, as detailed in Chapter 4.4, with the use cases of everyday

practitioners.

The overall design choice funnels from a wide tab into more granular analyses, offering the

user various angles to inspect the current data. Generally, the application is split into three

categories: (1) a Clustering View (Chapter 5.1), (2) a Conditional View (Chapter 5.2), and an

Event View (Chapter 5.3). Figure 11 illustrates the interplay between these subsystems.

Clustering

Conditional

Events

Multi-season
analysis

Per team and 
matchup analysis

Per match and event 
analysis

A vs. B

C vs. D

Figure 11: The systematic illustration displays how the three implemented views of the application repre-

sent a broader to finer analysis granularity. The system allows the user to first group similar formations

across the entire data set in the clustering view, to analyze matchup-specific formations in the conditional

view, and to finally analyze formations within a single matchup across different events in the events view.

The design decision introducing multiple distinct systems to allow the user the liberty to decide

which specific formation information is most suitable for the current use case as practical analysis

tool. It is in line with design requirements ü S2 Limitation to Relevant Options, ü S3

Iterative Subsetting , and ÿ V2 Clear Separation of Concerns. The full extent of

possible applications is unpredictable. Therefore, the more flexibility the user is granted, the

better the program can fulfill its role to supplement and facilitate the decision making process.

A navigation bar at the top offers access to the individual systems.
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5.1 Cluster View

The clustering view offers an overview of a specific user-defined number of clusters of formations.

These groupings allow the user to identify overarching tendencies of patterns that define the for-

mation structure. Almost 10,000 individual two-minute sequences (see Chapter 4 for derivation

details) form the data-basis of the clustering algorithm. Figure 12 provides an overview of the

simplest and most general version of the visualization.

(a) Zoom-in view of menu choices for clustering view

Cluster 1 (5.2%) Cluster 2 (7.5%) Cluster 3 (0.1%) Cluster 4 (7.7%) Cluster 5 (6.4%)

Cluster 6 (9.5%) Cluster 7 (3.6%) Cluster 8 (3.0%) Cluster 9 (1.1%) Cluster 10 (5.5%)

Cluster 11 (5.3%) Cluster 12 (5.3%) Cluster 13 (0.0%) Cluster 14 (0.6%) Cluster 15 (6.6%)

Cluster 16 (2.5%) Cluster 17 (7.0%) Cluster 18 (4.9%) Cluster 19 (8.0%) Cluster 20 (10.4%)

Home Cluster Analysis Conditional Analysis Event Analysis

All
Choose team

20
Number of clusters

Next clusters
Choose hover effect

Show ellipses Show proportions

(b) Overview of clustering view

Figure 12: This illustration shows the clustering view without any sub-setting or additional visualization-

features applied. It shows the default twenty clusters into which the formation sequences were grouped.

There is no inherent ordering of the clusters. Additional information in the title contain the relative

cluster size (share of formations included in specific cluster), and a running count for the total of cluster

numbers.

The red numbers afford guidance throughout the sub-chapters of the clustering tool’s explana-

tion. While all of the effects can be selected and used in combination, the overall options focus on

the most important information coaches utilize to group formations. This design choice supports

ü S2 Limitation to Relevant Options and ü S3 Iterative Subsetting . For illustrative

purposes, the following explanation will try to isolate them as much as possible and compare

them to the base case depicted in Figure 12.
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Option 1 Team selection:

The user can select either all teams or any teams individually as the visualization’s primary

focal point. The selection happens via a drop-down menu. Since clusters can theoretically con-

tain each team’s sequences, it is essential to highlight how strongly sequences of a specific team

impact any given cluster. More intuitively, this visualization feature describes the proportion of

sequences in a given cluster associated with the selected team.

Cluster 7 (42.5%) Cluster 8 (37.3%) Cluster 10 (40.9%)

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg
Choose team

20
Number of clusters

Next clusters
Choose hover effect

Show ellipses Show proportions

Cluster 1 (0.7%)

Off: 0.67 Off: 0.33

Cluster 2 (1.3%)

Off: 0.38 Off: 0.63

Cluster 4 (14.4%)

Off: 0.48 Off: 0.52

Cluster 5 (5.0%)

Off: 0.44 Off: 0.56

Cluster 6 (1.9%)

Off: 0.47 Off: 0.53 Off: 0.45 Off: 0.55 Off: 0.52 Off: 0.48

Cluster 9 (5.4%)

Off: 0.80 Off: 0.20 Off: 0.53 Off: 0.47

Cluster 11 (11.8%)

Off: 0.51 Off: 0.49

Cluster 12 (9.7%)

Off: 0.55 Off: 0.45

Cluster 14 (5.5%)

Off: 0.67 Off: 0.33

Cluster 15 (4.6%)

Off: 0.50 Off: 0.50

Cluster 16 (0.9%)

Off: 1.00 Off: 0.00

Cluster 17 (3.5%)

Off: 0.71 Off: 0.29

Cluster 18 (8.1%)

Off: 0.47 Off: 0.53

Cluster 19 (7.0%)

Off: 0.46 Off: 0.54

Cluster 20 (5.9%)

Off: 0.46 Off: 0.54

Figure 13: This illustration shows clustering view adjusted for a single team. The clusters are faded out

if they do not include many sequences of the selected team and the cluster title contains the proportion of

sequences within that cluster that are from the selected team. For example, 42.5% of the formations in

cluster 7 are from “Red Bull Salzburg”.

The opacity of the displayed fields is adjusted to correlate with the relative proportion. The

title adjusts to show how the selected team’s sequences impact the percentages of a cluster.

Therefore, informally, the number in the cluster title aligns with the opacity of the cluster

visualization. This reasoning mimics how coaches try to group teams in terms of similarity

of collective movements. Which teams represent a similar playing style represents one of the

most omnipresent questions in formations analysis. Therefore, the design choice supports the

search/subsetting requirement ü S1 Intuitive Design Choices.

Option 2 Cluster-size selection:

The number of clusters determines the grouping process for the data. It represents a trade-off

between robustness to outliers (with fewer clusters) to a more granular view of the data (with

more clusters). Figure 14 shows an overview of some of the choices a user can make to select
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the cluster size. All values from one to twenty are possible37 and can be incremented via typing

in a valid number or incrementing it via an up- or down-arrow next to the number field.

The values are pre-computed in the backend, which results in immediate visualization transi-

tions, following ÿ V3 Fast Access and Performance . This clustering interaction represents

an extension to the clustering display in previous work [66] and limits the result presentation to

twenty clusters without additional interaction possibilities to avoid information cluttering. The

free choice to decide the best cluster size for a given data set underlines requirement ü S4 Easy

Extensibility . The system remains flexible for varying datasets, where the overall number of

sequences determines the optimal amount of clusters.

Cluster 1 (5.2%) Cluster 2 (7.5%) Cluster 3 (0.1%) Cluster 4 (7.7%) Cluster 5 (6.4%)

Cluster 6 (9.5%) Cluster 7 (3.6%) Cluster 8 (3.0%) Cluster 9 (1.1%) Cluster 10 (5.5%)

Cluster 11 (5.3%) Cluster 12 (5.3%) Cluster 13 (0.0%) Cluster 14 (0.6%) Cluster 15 (6.6%)

Cluster 16 (2.5%) Cluster 17 (11.9%) Cluster 18 (8.0%) Cluster 19 (10.4%)

Home Cluster Analysis Conditional Analysis Event Analysis

All
Choose team

19
Number of clusters

Next clusters
Choose hover effect

Show ellipses Show proportions

(a) Cluster view with 19 clusters

Cluster 1 (5.2%) Cluster 2 (7.5%) Cluster 3 (0.1%) Cluster 4 (7.7%) Cluster 5 (6.4%)

Cluster 6 (9.5%) Cluster 7 (6.6%) Cluster 8 (6.5%) Cluster 9 (5.3%) Cluster 10 (5.3%)

Cluster 11 (0.0%) Cluster 12 (7.3%) Cluster 13 (14.4%) Cluster 14 (8.0%) Cluster 15 (10.4%)

Home Cluster Analysis Conditional Analysis Event Analysis

All
Choose team

15
Number of clusters

Next clusters
Choose hover effect

Show ellipses Show proportions

(b) Cluster view with 15 clusters

Cluster 1 (12.6%) Cluster 2 (0.1%) Cluster 3 (7.7%) Cluster 4 (15.8%) Cluster 5 (13.1%)

Cluster 6 (10.6%) Cluster 7 (0.0%) Cluster 8 (21.7%) Cluster 9 (8.0%) Cluster 10 (10.4%)

Home Cluster Analysis Conditional Analysis Event Analysis

All
Choose team

10
Number of clusters

Next clusters
Choose hover effect

Show ellipses Show proportions

(c) Cluster view with 10 clusters

Cluster 1 (12.6%) Cluster 2 (23.6%) Cluster 3 (23.8%) Cluster 4 (21.7%) Cluster 5 (18.4%)

Home Cluster Analysis Conditional Analysis Event Analysis

All
Choose team

5
Number of clusters

Next clusters
Choose hover effect

Show ellipses Show proportions

(d) Cluster view with 5 clusters

Figure 14: This illustration shows how different cluster sizes determine the number of groupings displayed.

The almost 10,000 formation sequences are clustered into the selected number of groups. The selection

span ranges from 1 cluster (all sequences together in a grand average) to a maximum of 20 groups.

Option 3 Hover-effect selection:

Every field includes a so-called hover-effect, which displays an additional rectangle with infor-

mation when the mouse moves over it. The rectangle disappears when the mouse leaves the

respective field to anywhere but an adjacent field. However, if the mouse enters an adjacent

field, the rectangle, also called tooltip, displays the information of the newly entered field. The

two options for the tooltip information are Team content and Next cluster.

37 Higher cluster numbers were tested but resulted in sparse clusters with just a single or no observations.

Therefore, the maximum cluster number is twenty.
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The decision to incorporate a drop-down menu to choose the preferred information follows

search/subsetting requirement ü S4 Easy Extensibility , because additional tooltips are quickly

developed and implemented.

Team content offers the user more insights into what kind of teams mostly make up the re-

spective cluster’s content. This tooltip expands on the user’s information when just a single

team is selected and the opacity shifts.

(a) Hover-effect for Team content

(b) Hover-effect for Next cluster

Figure 15: The two options for the hover-effect determine what information is shown in the tooltip when

one of the clusters is hovered with the cursor. Figure 15a shows the listing of the top five teams in the

cluster in descending order for the Team content option. Figure 15b highlights the most probable next

cluster for any sequence contained in the respective cluster (here cluster 7) for the Next cluster option.

Next cluster affords the integration of a temporal dimension to this static analysis. The op-

tion addresses the question of a cluster’s most probable next formation. Hence, the two-minute

sequences in a cluster are analyzed to provide information about the most likely prospective

sequence.
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Option 4 Spatial-error ellipses:

Spatial error-ellipses introduce a notion of uncertainty into the otherwise absolute formation

calculation. Players rarely stand still and this deviation from their mean (potentially assigned)

position forms the ground for exciting discussions between coach and player. The ellipses form

a two standard deviation (see Chapter 4.1 for detailed calculation instructions) visualization of

how the players move around the calculated position. Figure 16 illustrates a zoomed-in view of

a single cluster and the comparison to what the entire visualization displays when the ellipses-

option is selected.

(a) Spatial error-ellipses for single cluster

Cluster 1 (5.2%) Cluster 2 (7.5%) Cluster 3 (0.1%) Cluster 4 (7.7%) Cluster 5 (6.4%)

Cluster 6 (9.5%) Cluster 7 (3.6%) Cluster 8 (3.0%) Cluster 9 (1.1%) Cluster 10 (5.5%)

Cluster 11 (5.3%) Cluster 12 (5.3%) Cluster 13 (0.0%) Cluster 14 (0.6%) Cluster 15 (6.6%)

Cluster 16 (2.5%) Cluster 17 (7.0%) Cluster 18 (4.9%) Cluster 19 (8.0%) Cluster 20 (10.4%)

Home Cluster Analysis Conditional Analysis Event Analysis

All
Choose team

20
Number of clusters

Team content
Choose hover effect

Show ellipses Show proportions

(b) Overview of spatial error-ellipses for all clusters

Figure 16: The user can decide to show the spatial error ellipses of every position in a cluster. It provides

a overview of the spread of the points for the calculation of the mean position. It therefore offers insights

to the calculation accuracy. The ellipses afford a natural interpretation to deduct a player’s relative

movement around the mean position.

The user gains an additional dimension of information, and the spatial deviation supports the

user’s understanding of the certainty of single positional calculations. The choice for ellipses

directly embedded into the visualization follows ÿ V1 Familiar Result Presentation Pat-

terns. Alternatives, such as statistical significance measures or more advanced visualization

techniques, might offer a marginal increase in conveyed information. However, users— repre-

senting a non-technical target audience for this system—will lose a sense of control for visual-

izations that are not immediately obvious and interpretable.

Option 5 Offense-/ Defense-proportions:

One of the significant challenges of the cluster view is the black box -connotation38 it conveys.

The user might need a high-level overview but does not know much of the clusters’ actual con-

tent. To enlighten the division of formation sequences further, the user can visualize the offensive

and defensive proportion in each cluster to find significant differences in formation in and out

of possession.

Once again, the design choice of simple bar charts follows the design requirement ÿ V1 Fa-

38 A black box in scientific computing, and engineering refers to a system that only provides input and output

information without transparency to its inner workings.
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(a) Offense / Defense proportions for single cluster

Cluster 1 (5.2%) Cluster 2 (7.5%) Cluster 3 (0.1%) Cluster 4 (7.7%) Cluster 5 (6.4%)

Cluster 6 (9.5%) Cluster 7 (3.6%) Cluster 8 (3.0%) Cluster 9 (1.1%) Cluster 10 (5.5%)

Cluster 11 (5.3%) Cluster 12 (5.3%) Cluster 13 (0.0%) Cluster 14 (0.6%) Cluster 15 (6.6%)

Cluster 16 (2.5%) Cluster 17 (7.0%) Cluster 18 (4.9%) Cluster 19 (8.0%) Cluster 20 (10.4%)

Home Cluster Analysis Conditional Analysis Event Analysis

All
Choose team

20
Number of clusters

Team content
Choose hover effect

Show ellipses Show proportions

Def: 0.54 Off: 0.46 Def: 0.49 Off: 0.51 Def: 0.60 Off: 0.40 Def: 0.51 Off: 0.49 Def: 0.46 Off: 0.54

Def: 0.49 Off: 0.51 Def: 0.47 Off: 0.53 Def: 0.53 Off: 0.47 Def: 0.54 Off: 0.46 Def: 0.52 Off: 0.48

Def: 0.50 Off: 0.50 Def: 0.52 Off: 0.48 Def: 0.00 Off: 1.00 Def: 0.53 Off: 0.47 Def: 0.49 Off: 0.51

Def: 0.48 Off: 0.52 Def: 0.53 Off: 0.47 Def: 0.49 Off: 0.51 Def: 0.49 Off: 0.51 Def: 0.50 Off: 0.50

(b) Offense / Defense proportions for all clusters

Figure 17: To highlight the respective proportions of offensive and defensive proportions within a cluster,

the user can show these embedded in the figure as bar charts. The extreme clusters with 100 % offensive

players included refer to outliers, with less than three observations in them.

miliar Result Presentation Patterns. Therefore, a cluster is easily distinguishable for its

more offensive or defensive structure, which offers insights into a team’s overall playing style.

Subsetting the cluster view to a specific team (see Option 1) will adjust the bar charts of the

proportions of the specific team’s sequences in a cluster. Alternatively, to put it more concise,

if a specific team is selected, the bar chart will show the constellation of the team’s sequences

for each cluster. The left bar chart in green indicates relative amount of defensive formations.

Since the colors overlap with the blue player points, green became the obvious solution to

avoid cluttering the dense information. The visualization mirrors across the halfcourt line for

the proportion of offensive formations in red. Both bar charts are integrated into the soccer field

to avoid unnecessary space and introduce a novel visualization utilizing the natural geometric

shape of the 2D view of the playing field. The graph includes the exact values of defensive and

offensive proportions written in white inside the bar chart to alleviate the necessity to guess the

values from the diagrams’ height.

Combined subsetting:

Figure 18 demonstrates an exemplary query to illustrate the degree of complexity that the com-

bination of the seemingly simple Options 1-5 achieves. The hypothetical question could read

“What are the seven most common formational clusters in the data and which of those are

mainly made-up of formations by Red Bull Salzburg? Also, how much did the players deviate

from their assigned positions?”.

This simultaneously simple and iterative design follows the design paradigm to be just as complex

as necessary, which builds directly on search/subsetting requirements ü S2 Limitation to

Relevant Options and ü S3 Iterative Subsetting .
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Cluster 4 (37.6%)

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg
Choose team

7
Number of clusters

Team content
Choose hover effect

Show ellipses Show proportions

Cluster 1 (1.0%)

Off: 0.45 Off: 0.55

Cluster 3 (6.8%)

Off: 0.47 Off: 0.53 Off: 0.51 Off: 0.49

Cluster 5 (10.7%)

Off: 0.53 Off: 0.47

Cluster 6 (4.7%)

Off: 0.56 Off: 0.44

Cluster 7 (6.4%)

Off: 0.46 Off: 0.54

Figure 18: This example illustrates the power of a simple combination of single query options providing

real insights to a hypothetical but realistic scenario. The simple visualization style allows for iterative

subsetting, displaying the most common clusters for Red Bull Salzburg. The additional ellipses offers the

user a sense of prediction accuracy embedded in the respective playing fields.

5.2 Conditional View

The conditional view allows the user to narrow in from the overarching question of the un-

derlying tendencies for all formations to specific use cases. The focus lies on the team- and

match-up-specific subsetting of the data. This option follows search/subsetting requirement ü

S3 Iterative Subsetting to offer practical insights for match-day preparations.

The remainder of the chapter details the available options to either define the relevant data to

display or change the visualization to include or reduce the shown information. This flexibility

remains crucial for the usability and is in line with ÿ V1 Familiar Result Presentation

Patterns to mimic the interaction of a coach with a whiteboard. Figure 19 demonstrates the

entire view for two teams. The top portion of the visualization allows the user to subset the

data, while the bottom part visualizes the chosen formations on a single field. The mode se-

lection reflects a common question of how offensive formations might respond to a defensive

formation—mirroring a specific match situation. The background covers the team logos for an

additional visual cue and improved user experience. The red numbers provide visual guidance

throughout the chapter. These numbers are not part of the original system, and the figure hides

team logos for an easier explanation of the individual visualization options.
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(a) Conditional view - menu

Home Cluster Analysis Conditional Analysis Event Analysis

TSV Hartberg (Offense)  vs  Austria Wien (Defense)

TSV Hartberg
Choose team

Austria Wien
Choose team

Offense
Game mode

Defense
Game mode

Show team Show team

Show ellipses Show ellipses

Display with relative scaling

(b) Overview of conditional view

Figure 19: This illustration shows the conditional view without any sub-setting or additional visualization-

features applied. It displays the vanilla comparison of the offense versus the defense of two teams. The red

numbers are added for future references throughout this chapter. Figure 19a offers improved readability

of the menu choices, while Figure 19b provides a total impression of the design layout of the view.

Option 1a / 1b Match-up selection:

The most obvious choice allows the team selection. Formations for specific teams can either

entail the home team, the opponent, or the average for the home team (this is only an option

for 1b). The formations are pre-calculated and will therefore load immediately, as required by

ÿ V3 Fast Access and Performance . The left team is displayed in blue and the opponent

in red to quickly distinguish the player locations on the field.

The title aims to provide a summary of the selected options by highlighting the selected teams,

their mode (see menu Option 2), and the opponent (or the selection of Season Average) colored

in the same color as their team’s points.

The color scheme addresses design requirement ÿ V1 Familiar Result Presentation Pat-

terns, which underlines the frequently used red vs blue color schemes in analog versions of

formation visualizations.
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Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg (Offense) Season Average

Red Bull Salzburg
Choose team

Season Average
Choose team

Offense
Game mode

Defense
Game mode

Show team Show team

Show ellipses Show ellipses

Display with relative scaling

(a) Team’s average formation

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg (Offense)  vs  TSV Hartberg (Defense)

Red Bull Salzburg
Choose team

TSV Hartberg
Choose team

Offense
Game mode

Defense
Game mode

Show team Show team

Show ellipses Show ellipses

Display with relative scaling

(b) Specific match-up visualization

Figure 20: This illustration highlights the options for the team selection feature. Figure 20a lays out

the view for a grand average formation of Red Bull Salzburg over the entire data set, while Figure 20b

highlights a team’s formation subset to a specific match-up (here against TSV Hartberg).

Option 2 Mode selection:

Additionally to the match-up, the user can differentiate between offensive and defensive forma-

tions. This option reflects a sentiment from expert validations that underlines that formations

often sketch out a rough match plan but that the actual match situation will strongly affect

these rough layouts. Therefore, in line with design requirement ÿ V2 Clear Separation of

Concerns formation calculations are not mixed across offense and defense.

Home Cluster Analysis Conditional Analysis Event Analysis

TSV Hartberg (Offense)  vs  Austria Wien (Defense)

TSV Hartberg
Choose team

Austria Wien
Choose team

Offense
Game mode

Defense
Game mode

Show team Show team

Show ellipses Show ellipses

Display with relative scaling

(a) Mode selection - offensive formation

Home Cluster Analysis Conditional Analysis Event Analysis

TSV Hartberg (Defense)  vs  Austria Wien (Defense)

TSV Hartberg
Choose team

Austria Wien
Choose team

Defense
Game mode

Defense
Game mode

Show team Show team

Show ellipses Show ellipses

Display with relative scaling

(b) Mode selection - defensive formation

Figure 21: The user can decide between the offensive or the defensive formation of a team. Figure 21a

highlights the typical offensive formation of TSV Hartberg against Austria Wien, while Figure 21b displays

the defensive counterpart.

Option 3 Team display:

To avoid cluttering the valuable visualization space, the user can decide to display both teams

or hide either one. Hiding an entire team disabled the selector for spatial error-ellipses.
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This illustration extends search/subsetting requirement ü S2 Limitation to Relevant Choices

for the actual visualization and visualization requirement ÿ V2 Clear Separation of Con-

cerns to focus on the team of interest.

Home Cluster Analysis Conditional Analysis Event Analysis

TSV Hartberg (Offense)  vs  Austria Wien (Defense)

TSV Hartberg
Choose team

Austria Wien
Choose team

Offense
Game mode

Defense
Game mode

Show team Show team

Show ellipses Show ellipses

Display with relative scaling

(a) Hide team selection - opponent not shown

Home Cluster Analysis Conditional Analysis Event Analysis

TSV Hartberg (Offense)  vs  Austria Wien (Defense)

TSV Hartberg
Choose team

Austria Wien
Choose team

Offense
Game mode

Defense
Game mode

Show team Show team

Show ellipses Show ellipses

Display with relative scaling

(b) Hide team selection - opponent shown

Figure 22: The user can hide one or even both teams, if the visualization becomes cluttered. Figure 22a

illustrates the formation of TSV Hartberg against Austria Wien without the opponent shown, while Fig-

ure 22b shows both teams.

Option 4 Spatial error-ellipses:

Similar to Option 4 in Chapter 5.1, the user can introduce a visual measure of uncertainty to

the visualization by displaying spatial error-ellipses around each average location. Chapter 5.1

provides a more visual introduction, while Step 4 in Chapter 4.1 offers a mathematical back-

ground on the derivation. Figure 23 compares the options of displaying and hiding the ellipses.

Home Cluster Analysis Conditional Analysis Event Analysis

TSV Hartberg (Offense)  vs  Austria Wien (Defense)

TSV Hartberg
Choose team

Austria Wien
Choose team

Offense
Game mode

Defense
Game mode

Show team Show team

Show ellipses Show ellipses

Display with relative scaling

(a) Ellipses selection - ellipses not shown

Home Cluster Analysis Conditional Analysis Event Analysis

TSV Hartberg (Offense)  vs  Austria Wien (Defense)

TSV Hartberg
Choose team

Austria Wien
Choose team

Offense
Game mode

Defense
Game mode

Show team Show team

Show ellipses Show ellipses

Display with relative scaling

(b) Ellipses selection - ellipses shown

Figure 23: Spatial error-ellipses allow the user a notion of uncertainty of the displayed average positions.

Figure 23a illustrates the formation of TSV Hartberg against Austria Wien again as a base case without

any additional features shown, while Figure 23b includes the ellipses around the players.
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Option 5 Scale display:

The last option offers the user the flexibility to investigate a formation’s compactness compared

to or in isolation from other formations. Chapter 4.3 outlines the details of the method. In

short, the logic entails either shrunk or widened formations. The relative scaling uses the most

extreme x- and y-coordinates of the entire dataset to match the visualization domain. The

absolute scaling (relative scaling turned off) displays the formation in isolation and spread out

over the entire field. Figure 24 highlights this comparison and demonstrates its alignment with

design requirement ÿ V1 Familiar Result Presentation Patterns. Users generally feel

most familiar with formation displays that cover the whole field. The relative scaling option will

offer an intuitive new interpretation by making formations naturally more comparable to one

another when compared on the same scale.

Home Cluster Analysis Conditional Analysis Event Analysis

TSV Hartberg (Offense)  vs  Austria Wien (Defense)

TSV Hartberg
Choose team

Austria Wien
Choose team

Offense
Game mode

Defense
Game mode

Show team Show team

Show ellipses Show ellipses

Display with relative scaling

(a) Relative scaling - formation scaled relatively

Home Cluster Analysis Conditional Analysis Event Analysis

TSV Hartberg (Offense)  vs  Austria Wien (Defense)

TSV Hartberg
Choose team

Austria Wien
Choose team

Offense
Game mode

Defense
Game mode

Show team Show team

Show ellipses Show ellipses

Display with relative scaling

(b) Relative scaling - formation scaled in isolation

Figure 24: Scaling a formation relatively offers insights to the formations compactness in comparison

to the entire data set. Most formations will therefore be shrunk to represent their relative density in

comparison to all other formations. If relative scaling is turned off, the user can identify specific positions

more accurately, but loses a sense for how densely the formation stands in reality. Figure 24a illustrates

the formation of TSV Hartberg against Austria Wien scaled by the entire dataset, while Figure 24b

illustrates the wider view of the formation.

5.3 Event View

While the clustering view offers insight to overall groups within the entire dataset, the condi-

tional view clarifies specific team and match-up tendencies. For the most granular level of the

system, the event view visualizes match- and even situation-dependent information to the user.

The overall layout resembles the other two views to follow design requirement ÿ V1 Famil-

iar Result Presentation Patterns. Figure 25 shows the numbered view of a vanilla match

selection without any further subqueries.

As in previous illustrations, the red numbers will afford a structure to the discussion of the

individual features of the system, including match, mode, and score subsetting, as well as a

comparison feature to a team’s grand average formation.
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(a) Event view - menu

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg (Offense) on Nov 04, 2018 (2:1)  
during both halftimes for any score - on scale with other teams

Red Bull Salzburg
Choose team

Nov 04, 2018: Red Bull Salzburg - SV Mattersbu…
Choose Match

Offense
Choose mode

All
Choose Score

Both
Choose Time

-
Choose Speci�c Event

Display with relative scaling

Show team's average position

(b) Event view - overview

Figure 25: This illustration shows the event view menu in Figure 25a and an overview of the entire

visualization view in Figure 25b. Figure 25a on the left offers a zoomed-in view of the menu choices for

better readability, while the Figure 25b on the right side provides an overview of the entire tab. The red

numbers are added for orientation throughout the explanations of this chapter.

The title adjusts dynamically to provide the user with guidance on the specific match displayed

and selected options. The background covers the selected team’s logo without interfering with

the actual visualization of the playing field. The visualization also includes a hover-effect that

displays the most-likely player for any given average position. Figure 26 highlights this feature.

These small reminders for the user underlines ü S1 Intuitive Design Choices to pair creative

analyses with familiar and intuitive pictures facilitating orientation around the system.

Option 1 Team selection:

The team selection drop-down menu follows a similar logic to the same selector of the conditional

view. The menu is pre-filled with all teams included in the data set, and the user can decide on

which team to focus. This decision will impact the options of option 2—the match selection—to

only include matches of the selected team.
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Figure 26: The user can display the most likely player for any given position on the field by hovering over

a small area surrounding the indicated position.

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg (Offense) on Nov 04, 2018 (2:1)  
during both halftimes for any score - on scale with other teams

Red Bull Salzburg
Choose team

Nov 04, 2018: Red Bull Salzburg - SV Mattersbu…
Choose Match

Offense
Choose mode

All
Choose Score

Both
Choose Time

-
Choose Speci�c Event

Display with relative scaling

Show team's average position (a) Team selection - Match of Red Bull Salzburg

Home Cluster Analysis Conditional Analysis Event Analysis

TSV Hartberg (Offense) on Nov 24, 2018 (0:4)  
during both halftimes for any score - on scale with other teams

TSV Hartberg
Choose team

Nov 24, 2018: TSV Hartberg - Red Bull Salzburg…
Choose Match

Offense
Choose mode

All
Choose Score

Both
Choose Time

-
Choose Speci�c Event

Display with relative scaling

Show team's average position (b) Team selection - Match of TSV Hartberg

Figure 27: The team selection impacts the visualization by initially auto-selecting the first match of the

data set of a specific team. It also updates the title to represent the corresponding selection. In this case,

the team switches from Red Bull Salzburg in Figure 27a to TSV Hartberg in Figure 27b.

Option 2 Match selection:

The match selection offers a new level of granularity in comparison to the other views. Here,

the user can select a specific team and the formation of a single match. The matches are sorted

by date and follow the format of “Date: Match-up - Score“, so, for example, Nov 04, 2018: Red

Bull Salzburg - SV Mattersburg: 2:1. Following common practices in sports and visualization

requirement ÿV1 Familiar Result Presentation Patterns, the names and goals of the

teams begin with the home team. The titles adjust for any newly selected match.
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The season averages for the 2018/2019 and 2019/2020 season are also available options, addi-

tionally to the individual matches in the dataset.

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg (Offense) on Nov 04, 2018 (2:1)  
during both halftimes for any score - on scale with other teams

Red Bull Salzburg
Choose team

Nov 04, 2018: Red Bull Salzburg - SV Mattersbu…
Choose Match

Offense
Choose mode

All
Choose Score

Both
Choose Time

-
Choose Speci�c Event

Display with relative scaling

Show team's average position (a) Match selection - Match of 11/04/2018

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg (Offense) on May 12, 2019 (2:1)  
during both halftimes for any score - on scale with other teams

Red Bull Salzburg
Choose team

May 12, 2019: Red Bull Salzburg - LASK Linz - 2:1
Choose Match

Offense
Choose mode

All
Choose Score

Both
Choose Time

-
Choose Speci�c Event

Display with relative scaling

Show team's average position (b) Match selection - Match of 05/12/2019

Figure 28: The match selection affords the user the option to change the selected match for any chosen

team. The visualization compares two formations: Red Bull Salzburg of 04. November, 2018 in Figure 28a

with Red Bull Salzburg of 12. May, 2019 in Figure 28b.

Option 3 Mode selection:

Similar to the mode selection described in Chapter 5.2, the user can choose a mode from offense

or defense to query the respective data. Figure 29 highlights the alternatives and how the title

adjusts for the new information.

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg (Offense) on Nov 04, 2018 (2:1)  
during both halftimes for any score - on scale with other teams

Red Bull Salzburg
Choose team

Nov 04, 2018: Red Bull Salzburg - SV Mattersbu…
Choose Match

Offense
Choose mode

All
Choose Score

Both
Choose Time

-
Choose Speci�c Event

Display with relative scaling

Show team's average position (a) Mode selection - Offensive formation

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg (Defense) on Nov 04, 2018 (2:1)  
during both halftimes for any score - on scale with other teams

Red Bull Salzburg
Choose team

Nov 04, 2018: Red Bull Salzburg - SV Mattersbu…
Choose Match

Defense
Choose mode

All
Choose Score

Both
Choose Time

-
Choose Speci�c Event

Display with relative scaling

Show team's average position (b) Mode selection - Defensive formation

Figure 29: The mode selection differentiates between the offensive and defensive formations of a team for

a specific match. Figure 29a displays the average position of all sequences in possession while Figure 29b

highlights the ones out of possession.
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Option 4 Score selection:

To analyze a match in detail, a coach might be interested in a team’s behavior under pressure

or dominating. The score selection offers additional insight into the stages of a game by high-

lighting situations of various periods. These details might reveal a team’s tendency in differing

situations. Figure 30 exemplifies these features. The available options might include even, be-

hind, or ahead.

Questions of how a team defends when ahead or how it attacks when behind (or vice versa)

can become vitally important to prepare a team for a given match-up. The options to select

are limited to the situations present for the selected team. For example, if the home team of

a 0-4 match is selected, the drop-down will not contain an option to choose ahead, because the

selected team was never ahead in the game. This pre-selection is also adjusted for smaller time

frames, such as the available scoring labels when subset to only the second half—see Option 5.

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg (Offense) on Nov 04, 2018 (2:1)  
during both halftimes when Even - on scale with other teams

Red Bull Salzburg
Choose team

Nov 04, 2018: Red Bull Salzburg - SV Mattersbu…
Choose Match

Offense
Choose mode

Even
Choose Score

Both
Choose Time

-
Choose Speci�c Event

Display with relative scaling

Show team's average position (a) Score selection - Even

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg (Offense) on Nov 04, 2018 (2:1)  
during both halftimes when Ahead - on scale with other teams

Red Bull Salzburg
Choose team

Nov 04, 2018: Red Bull Salzburg - SV Mattersbu…
Choose Match

Offense
Choose mode

Ahead
Choose Score

Both
Choose Time

-
Choose Speci�c Event

Display with relative scaling

Show team's average position (b) Score selection - Ahead

Figure 30: The score selection subsets a match into distinct sequences where the selected team was either

even with, or ahead / behind of the opponent. Figure 30a displays the average position of all sequences

of the selected team Red Bull Salzburg being even in score while Figure 30b highlights the sequences when

the team was leading.

This feature introduces the notion of sub-match granularity, which allows for the subsetting of

periods on a finer level than just the per-match-average. Search/subsetting requirement üS3

Iterative Subsetting aims to lead the user to more advanced queries than a simple match

average. This feature represents the first notion of temporal stages within the match to the

visualization, which is often referenced as an important aspect to any formation analysis (see

Chapter 7.2).
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Option 5 Halftime selection:

The halftime selector represents the second temporal selection device of the list. The user can,

independent of score or match situation, subset the data to first and second halves. If the times

overlap with the score change, the visualization might show similar results to the selection to

Option 4, but its logic is entirely independent of it. Figure 31 displays the halftime subsetting

for the vanilla case of a single match with no further options changed from the default.

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg (Offense) on Nov 04, 2018 (2:1)  
for 1st half for any score - on scale with other teams

Red Bull Salzburg
Choose team

Nov 04, 2018: Red Bull Salzburg - SV Mattersbu…
Choose Match

Offense
Choose mode

All
Choose Score

1st half
Choose Time

-
Choose Speci�c Event

Display with relative scaling

Show team's average position (a) Halftime selection - First half

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg (Offense) on Nov 04, 2018 (2:1)  
for 2nd half for any score - on scale with other teams

Red Bull Salzburg
Choose team

Nov 04, 2018: Red Bull Salzburg - SV Mattersbu…
Choose Match

Offense
Choose mode

All
Choose Score

2nd half
Choose Time

-
Choose Speci�c Event

Display with relative scaling

Show team's average position (b) Halftime selection - Second half

Figure 31: The halftime selection subsets the match to either the first or second halftime of a match.

Figure 31a displays the average position of all sequences of the selected team Red Bull Salzburg during

the first half while Figure 31b highlights the sequences of the team during the second.

Option 6 Event selection:

Options 4 and 5 introduced options to select events within a match. The following selectors

address feedback implemented after interactive feedback sessions with domain experts (see for

example Chapter 3).

The event selector features the formations during specific match events. These events are highly

distinct from the general match formations covered by the previous functionalities. A particular

interest lies within the formation during a long pass from the goalie, or goal kick (German Ab-

stoss). These situations lead to a subsequent scrambling for the ball and initiate the first stage

of an offense—the build-up.

So far the selection only includes the Abstoss-event, but in line with search/subsetting require-

ment üS4 Easy Extensibility , the system will cover multiple additional events in future

versions.

The selection of Abstoss as event changes the selection options of a couple of other drop-down

fields. Abstoss data is scarce, which means every match only includes a few of these events.

Therefore, a specific formation subsetting during a long pass for a specific match introduces



48 5 A System for Multi-Match Formation Analysis

more noise than information. The match selection becomes disabled for this event, and only an

average formation per team can be selected to avoid cluttering of options. The same logic holds

for the score, the halftime, and the scaling selector (Option 7). These are disabled if no specific

match is selected.

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg during Abstoss situations when in Offense  
- displayed over entire pitch

Red Bull Salzburg
Choose team

Nov 04, 2018: Red Bull Salzburg - SV Mattersbu…
Choose Match

Offense
Choose mode

All
Choose Score

Both
Choose Time

Abstoss
Choose Speci�c Event

Display with relative scaling

Show team's average position (a) Event selection - Abstoss offense

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg during Abstoss situations when in Defense  
- displayed over entire pitch

Red Bull Salzburg
Choose team

Nov 04, 2018: Red Bull Salzburg - SV Mattersbu…
Choose Match

Defense
Choose mode

All
Choose Score

Both
Choose Time

Abstoss
Choose Speci�c Event

Display with relative scaling

Show team's average position (b) Event selection - Abstoss defense

Figure 32: The event selection allows the user to visualize a team’s tendencies for specific situations

that are not already captured within the fluid match flow, but are of specific interests to invested parties.

The visualization shows the average formation of Red Bull Salzburg during a long pass from the goalie.

Figure 32a on the left shows the formation when the own goalie initiates their offense, while Figure 32b

on the right highlights the formation defending the opponent’s goalie pass. The graphic is extended by

visual cues to indicating the match direction and typical field of view of a goalie.

The defense and offense selection will become more impactful for the Abstoss-event, because

either one includes a visual cue—a colored cone—to underline the direction of play for the long

pass. Figure 32 shows the two formations for offense and defense for a selected team. It in-

corporates design requirements ÿV1 Familiar Result Presentation Patterns building on

the common color scheme used throughout the entire system. In line with ÿV3 Fast Access

and Performance , the results are pre-computed and therefore load immediately for the fastest

possible display of information.

Option 7 Scale display:

Scaling the formation over the entire field (for better visibility) or scaling it to other teams

(for better comparability) follows the same logic as within the conditional view. Chapter 4.3

provides calculation details. Figure 33 displays a comparison of the same formation scaled or

stretched to highlight the respective advantages. These options offer extensive insights into the

relative compactness additional to the strict match-plan of a formation. This logic follows the

idea of search/subsetting requirement üS3 Iterative Subsetting , especially in combination

with other options fo form complex queries.
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Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg (Offense) on Nov 04, 2018 (2:1)  
during both halftimes for any score - on scale with other teams

Red Bull Salzburg
Choose team

Nov 04, 2018: Red Bull Salzburg - SV Mattersbu…
Choose Match

Offense
Choose mode

All
Choose Score

Both
Choose Time

-
Choose Speci�c Event

Display with relative scaling

Show team's average position (a) Relative scaling - formations scaled relatively

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg (Offense) on Nov 04, 2018 (2:1)  
during both halftimes for any score - streched over entire pitch

Red Bull Salzburg
Choose team

Nov 04, 2018: Red Bull Salzburg - SV Mattersbu…
Choose Match

Offense
Choose mode

All
Choose Score

Both
Choose Time

-
Choose Speci�c Event

Display with relative scaling

Show team's average position (b) Relative scaling - formations scaled in isolation

Figure 33: Scaling a formation relatively offers insights to the formations compactness in comparison

to the entire data set. Most formations will therefore be shrunk to represent their relative density in

comparison to all other formations. If relative scaling is turned off, the user can identify specific positions

more accurately, but loses a sense for how densely the formation stands in reality. Figure 33a illustrates

the formation of Red Bull Salzburg against SV Mattersburg scaled by the entire dataset, while Figure 33b

illustrates the wider view of the formation.

Option 8 Show average formation:

While identifying formations in isolation provides insights, coaches are frequently interested

in measuring deviations from a base case or a default structure. The Show team’s average

formation-button provides this functionality. It overlays the current selection with a subtle vi-

sualization of a team’s grand average formation. This visualization embodies the visualization

requirement ÿV4 Comparability of Different Queries. The user does not have to compare

results separately but compares deviations from one another in a single visualization.

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg (Offense) on Nov 04, 2018 (2:1)  
during both halftimes for any score - on scale with other teams
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Choose team
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Choose mode
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Both
Choose Time

-
Choose Speci�c Event

Display with relative scaling

Show team's average position (a) Average formation not shown

Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg (Offense) on Nov 04, 2018 (2:1)  
during both halftimes for any score - on scale with other teams

Red Bull Salzburg
Choose team

Nov 04, 2018: Red Bull Salzburg - SV Mattersbu…
Choose Match

Offense
Choose mode

All
Choose Score

Both
Choose Time

-
Choose Speci�c Event

Display with relative scaling

Show team's average position (b) Average formation shown

Figure 34: This visualization shows the simultaneous display of the average as well as a specific formation.

The grand average is calculated across all sequences of a specific team without further subsetting.
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6 Use Cases

The potential use cases of the system cover an arbitrarily large number of scenarios. This chap-

ter aims to exemplify solutions to realistic scenarios, reaching beyond the basic functionalities

described previously, and illustrate exciting insights along the way.

The chapter’s overall structure mimics the system’s granularity levels and incorporates func-

tionalities of all views (cluster, conditional, and event, in detail in Chapters 5.1, 5.2, and 5.3,

respectively) to find wholesome information for the user.

This overall structure emphasizes the visualization requirement ÿ V2 Clear Separation of

Concerns—see Chapter 3 for a full list of design requirements. Hence, solely the question’s

granularity dictates the most appropriate view to investigate.

6.1 Use Case 1: Dynamic Flow of Formations

The first use case investigates high-level temporal dynamics of formations. The question to

analyze evolves around the question if the system can depict certain formation tendencies. The

Next cluster -hover-functionality of the cluster view affords the user information of formational

flows. This effect displays the five most likely next clusters of the currently hovered cluster.

Chapter 5.1 offers a detailed and visual explanation of the effect.

This visualization is most relevant for single teams—unless we expect the entire league to follow

a particular recurring flow of formations. Therefore, this example focuses on the sequence of

typical formations for a single team, here Red Bull Salzburg. By selecting the team from the

dropdown menu and choosing the Next clusters-hover-effect, we can inspect the typical sequence

of the team’s most prominent formations.

This visual inspection shows that for this use case, Red Bull Salzburg seems to follow a loop in

their formation movements. Figure 35 displays player movements within this loop that a coach

can inspect to prepare for Red Bull Salzburg’s common offensive patterns.

The initial formation resembles a typical formation pattern for the team—the diamond midfield

structure. Expert interviews communicated how Salzburg’s players exhibit strong individual

skills that allow them to initiate and profit from frequent scrambling in the middle third of the

playing field. Salzburg often creates chaotic situations that bring players in direct one-on-one

duel situations with opponents, which favors Salzburg’s individually better-equipped players.

This pattern aligns with the more detailed sequence depicted in Figure 36. After the initial

diamond shape contracts towards the middle, the two forwards close in, and the top and bottom

of the diamond shift forward. This movement increases pressure in the midfield, establishing

four forwards for quick passes through the middle attacking the goal. The formation eventually

returns to the initial state with wide forwards and a diamond at its heart. The entire defensive

line of four players remains almost constant, with only slight shifts towards the center during

the contraction.
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Figure 35: This visualization demonstrates a use case for the cluster view to find typical formation

sequences for specific teams. Here, a four formation loop for Red Bull Salzburg displays the general

movements from the top left to the bottom right and back. Red arrows indicate the sequence from one

cluster into the next for clearer readability, which are not included in the original system design.

This use case exemplifies a common situation, where a coach tries to first identify patterns of

a potential next opponent and to investigate the temporal flow of formations. In this example,

the user could easily visualize and research the nuanced movements of a top European soccer

club. The calculations, and visualizations are immediate following P A3 Fast Algorithmic

Performance and ÿ V3 Fast Access and Performance . Results align with experts’

opinions stated in qualitative interviews adhering to P A1 Correct Formation Calculations.

Furthermore, the queries feel intuitive to the user embodying ü S1 Intuitive Design Choices

and ÿ V1 Familiar Result Presentation .

6.2 Use Case 2: Formations Based on Opponent Quality

The explorative investigation of an opponents’ formations for upcoming matches presents an-

other typical use case for coaches. While an average structure might prove instructive for a

high-level overview, a team’s formation might deviate drastically between different match-ups.

For the second use case, the application will compare how Red Bull Salzburg formation responds

to a stronger versus a weaker opponent. Quick aside: Red Bull Salzburg has won the last seven

league titles in the Austrian Bundesliga. For the period covered in the data, the team of Wolfs-

berger AC was one of their fiercest rivals, finishing third in 2018/2019 and 2019/2020. WSG

Swarovski Tirol, formerly known as WSG Wattens, was promoted to the Austrian Bundesliga

in 2019, where they only won five out of 22 games and finished tenth of twelve teams. These

two opponents build the pool for this use case to display how Salzburg reacts to opponents of

different strengths.
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(a) Initial formation - diamond midfield (b) Contraction towards midfield

(c) Rebuilding the diamond midfield (d) Expansion of forwards towards initial formation

Figure 36: The visualization shows the individual player movements that a coach can derive from following

the “Next cluster“ hover information. Here, Red Bull Salzburg seems to contract their players towards the

middle before rebuilding their stereotypical diamond-shape of the midfielders. Eventually, they spread-out

again to return to their initial formation.

Salzburg’s average formation for the entire season displayed in Figure 37 serves as a benchmark

to compare the more subtle tendencies of Figure 38. The main insights of Figure 38 lie in the

variance Salzburg shows in its formation between offense and defense when playing against a

strong opponent. However, when the team faces a weaker team, displayed in the bottom row in

Figures 38c and 38d, the formations remain almost identical between offense and defense.

The formation change against Wolfsberger AC of offense and defense mainly impacts the mid-

field. The left midfielder shifts inside the center to stop Wolfsberger ’s offense through the middle.

Furthermore, compared to sequences against WSG Tirol, the outer forwards move further back

to a more defensive stance, which indicates a generally higher expectation of danger through

the outer lanes. The logic for this behavior becomes clear by further subsetting the query and

visualizing the opponent as well.
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Home Cluster Analysis Conditional Analysis Event Analysis

Red Bull Salzburg (Offense) Season Average

Red Bull Salzburg
Choose team

Season Average
Choose team

Offense
Game mode

Defense
Game mode

Show team Show team

Show ellipses Show ellipses

Display with relative scaling

Figure 37: The figure shows the average formation for Red Bull Salzburg from the conditional view. This

average helps as a reference when discussing specific cases throughout the chapter or, more specifically,

in Figure 38.
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(a) Formation against strong opponent - offense
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(b) Formation against strong opponent - defense
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(c) Formation against weak opponent - offense
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(d) Formation against weak opponent - defense

Figure 38: These figures display exciting cases on how a Red Bull Salzburg’s formation changes based on

the quality of the opponent. The top row exhibits the offense—Figure 38a— and defense—Figure 38b—

formations against Wolfsberger AC, one of the top competitors for the championship the last two years.

The bottom row mirrors the offense/defense split in Figure 38c and Figure 38d, but against a weaker

opponent (WSG Swarovski Wattens). The top row shows less resilience and a shift between offense and

defense, while the formations against the weaker opponent remain basically unchanged.
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Figure 39 displays both teams’ formations. Figure 39a shows the match-up of Red Bull Salzburg

against Wolfsberger AC (based on six matches in data set) and Figure 39b the counterpart

against WSG Swarovski Tirol (based on two matches in data set). The illustration addresses

the question why Salzburg’s formation varies drastically between offense and defense against a

strong, while remaining stable against a weak opponent.

The overall tendency of Salzburg ’s formation shifts against a weaker opponent. The forwards

attack the gaps in the middle of the defense, and the midfielders create more pressure on the

wings. This strategy is indicated by blue arrows in Figure 39b. This effort clashes with the

more defensive formation against stronger opponents exemplified in Figure 39a. The midfielders

address the additional pressure created by the broad wings and midfielders. Here, indicated by

red arrows in Figure 39b. The overall playing style indicates a more cautious propensity for the

higher scoring potential of a stronger team.

(a) Salzburg’s focus against strong opponent (b) Salzburg’s focus against weak opponent

Figure 39: This figure allows for a further investigation of the discrepancy of the formation behavior

hinted at in Figure 38. Red Bull Salzburg’s different approaches to respond to offensive and defensive

situations against a strong and weak team is partially explained by the opponent’s formation, especially

when both are scaled to the entire field. The strong opponent creates more pressure over the outer wings,

highlighted by red arrows in Figure 39a. This pressure results in a more defensive response by Salzburg.

The opposite is true for Figure 39b, where Salzburg creates an increased pressure through the middle and

ignores the presumably less dangerous offensive efforts by the opponent.

A separate discussion with an international sports journalist hints at core insights regarding the

general pressing39 tendencies of a team. The following summary paraphrases the interviewee’s

main points:

“Formations against strong and weak opponents differ mainly in how they attack free

spaces. More skill usually correlates with more time in possession, which lets a team

dictate a match’s flow. A stronger team will try to bully the weaker team through

continuous pressure, which will lead to unforced mistakes creating additional oppor-

tunities. However, stronger opponents create more space to introduce opportunities

without the luxury of opportunistic counter-offenses. Once the direct gateway through

39 Pressing is a collective team effort aimed at disrupting the opposition’s build-up to win the ball. It is different

from defending, which means closing down space in the defending third, thus preventing the opponents from

creating an opportunity to score—pressing usually identifies aggressive defense within different soccer field

regions.
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the middle is closed, teams will choose the second-best option to attack a goal, which

leads over the wings. These phenomena lead to two characteristic differences between

the behavior against weaker and stronger teams: First, the tactical tool of defensive

pressing becomes more prevalent against technically inferior opponents, and, second,

a stronger team will leverage more opportunities directly through the central-defense

against weaker than against stronger opponents.“

(Phone interview in February 2021)

These insights find a direct translation to the visualizations in Figure 39. An exact 1:1 mapping

of defense to offense paired with more poignant attacks through the middle characterize the

formation against an inferior team in Figure 39b.

Additional expert interviews further express that Salzburg is a team that thrives on creating

chaotic situations in the middle third, stealing the ball, and scoring off counter-offenses. There-

fore, the overall formation will shift forcefully from defense to offense if the team focuses on

defense against more vigorous opponents.

6.3 Use Case 3: Formation Adjustments During a Match

So far, Use Case 1 demonstrated the usage of overall flows between formations, and Use Case 2

subsets the data to specific match-up situations. The event view allows for an even more granu-

lar investigation by comparing formations of the same match. While many different subsetting

options are available, an often discussed feature is the strategic adjustment after a halftime

break. The coaches communicate changes dependent on the match situations, player behavior,

and tactical adjustments of the first half. Figure 40 represents an exemplary case of a match by

Rapid Wien against TSV Hartberg ending 3:3.

(a) Formation during first half (b) Formation during second half

Figure 40: The visualization shows a formation change of TSV Hartberg during a match. Figure 40a

displays the broader and more aggressive propensity of the first half, compared to the denser and more

conservative classical 4-1-4-1 formation of the second half in Figure 40b. The colored shapes are added

to mimic a coach’s expertise to visualize the formations and pick up focal subtleties.

While the formations do not drastically change, they exhibit a tactical shift towards a more

traditional 4-1-4-1 formation in the second half. The first half formation covers a broader area
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on the field with more focused offensive pressure through the middle. This adjustment becomes

increasingly intuitive when put into perspective of the time table of scored goals illustrated

in Table 1. This context is necessary to investigate the changing formation and reason about

potential causes intelligently. A self-evident explanation lies in TSV Hartberg ’s general fight for

lower seasonal standings than Rapid Wien.40 Therefore, a tied game represents more of a success

for TSV Hartberg than for Rapid Wien. The more structured and less aggressive orientation of

the second half seems to underline this tendency—the team tries to secure the even score, save

one point from the match,41 and avoid any additional goals from the opponent.

Minute Player Score (Rapid Wien : TSV Hartberg)

17’ Taxiarchis Fountas 1 : 0

45’ Jodel Dossou 1 : 1

51’ David Cancola 1 : 2

72’ Taxiarchis Fountas 2 : 2

83’ Dario Tadic 2 : 3

90+6’ Stefan Schwab 3 : 3

Table 1: Overview of goals during the investigated match of Rapid Wien and TSV Hartberg on 29.

September, 2019. The columns illustrate the minute of a goal, the scoring player, and the new score after

the goal in the format of home team : away team, respectively.

The use case offers a final example of how result queries building on ü S1 Intuitive Design

Choices, implementing algorithms that represent P A1 Correct Formation Calculations

and P A3 Fast Algorithmic Performance lead to visualizations adopting ÿ V3 Fast Ac-

cess and Performance and a ÿ V1 Familiar Result Presentation .

The displayed use cases only outline a tiny fraction of potential questions that a user can ask.

These three specific examples provided insights about the temporal flow of formations, strate-

gic adjustments to an opponent’s skill level, and potentially re-occurring tactical adjustments

throughout a match.

7 Evaluation

This thesis extends the current frontiers of formation analysis by improving algorithmic perfor-

mance and introducing an intuitive system that conveys correct formation information to its

users. While strict adherence to the design requirements detailed in Chapter 3 partially se-

cure the application’s intuitiveness, the correctness and speed of the formation derivation need

further validation. Accordingly, this chapter offers insights into the actual performance improve-

ment of the proposed solution in Chapter 7.1 and compares the calculated formations to the

manual estimates of unbiased domain experts in Chapter 7.2. The chapter concludes with pos-

sible extensions derived from the qualitative feedback by domain experts and implementation

recommendations for future work in Chapter 7.3.

40 Rapid Wien finished the 2019/2020 season in second place, right behind the championship team of Red Bull

Salzburg. TSV Hartberg, surprisingly, finished the season in a healthy fifth place.

41 A won match adds three points, a tie one point, and a loss zero points to a team’s overall score.
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7.1 Algorithmic Performance

Shaw and Glickman’s [66] approach to calculate formations via a relative distance matrix offers

the most relevant alternative to the clustering-based solution introduced in this thesis. A naive

implementation of the authors’ solution was tested for a large subset of the sequences and com-

pared to a calculation via this thesis’ solution to compare the solutions’ relative performances.

Since the authors offer no open-source code base for their relative distance method online, further

assumptions are necessary to mimic Shaw and Glickman’s [66] methodology. Their description

of the algorithm is as follows:

“Formations are measured by calculating the vectors between each player and the rest

of his teammates at successive instants during a match, averaging the vectors between

each pair of players over a specified time interval to gain a clear measure of their

designated relative positions. The final spatial distribution of the outfield players is

determined by the following algorithm: first, we set the centroid of the formation to be

the position of the player in the densest part of the team, as determined by the average

distance to the third-nearest neighbour. We then identify the relative position of his

nearest neighbour, the relative position of that player’s nearest neighbour (ignoring

any player already considered in the process) and so on, until the positions of all

players in the team have been determined.“ (Shaw and Glickman [66], page 3)

The following code-block represents the pseudo-code translation for the implementation of Shaw

and Glickman’s [66] formation calculation. The implementation runs on a large sub-sample of

the entire data set. Out of the almost 10,000 sequences in the data, an arbitrary combination

of 1,104 sequences of 42 games builds the performance comparison basis. The sequence covers

all teams and evenly splits the data in offense and defense formations to avoid inherent bias in

the test data.

The pseudo-code provides a detailed explanation of the implementation of the closest neighbor

to this thesis’ formulation. Chapter 4 outlines the underlying logic utilized for the k-means

algorithm and data cleaning procedure.

These derivations follow the algorithmic requirements of P A3 Fast Algorithmic Perfor-

mance , which builds the necessary basis for the visualization requirement ÿ V3 Fast Access

and Performance . The entire system rests on a user’s dynamic interaction, therefore, the

immediate and smooth run time of the code represents one of the core contribution of the thesis.

Figure 41 displays the stark difference in run time values for the sample. It is crucial to notice

the shifted x-axis, aiming to improve readability without shrinking one of the two distributions

to a shared axis. The results for Shaw and Glickman [66] implementation of formation calcula-

tion center around 16 seconds and are firmly left-skewed.

This leads to a mean run time of 19.88 seconds—see Table 2. The clustering solution offered

by this thesis runs in (mean) 1.06 seconds with a more evenly centered distribution around one

second.
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Algorithm 1: Shaw and Glickman [66] FORMATION IMPLEMENTATION

/* Single sequence per team, per match, either in offense or defense */

Input: sequenceData

Output: playersList

1 frames← EMPTY LIST

/* Find distance matrix of every player with every other player for every time frame */

2 for timeFrame in sequenceData do

3 cross← timeFrame× timeFrame // × represents the cross-product

/* Subset the data for when the player IDs are different */

4 cross← cross[actoridx] 6= cross[actoridy] // Limit of square- to triangular-matrix

/* Find distance in x- and y-direction */

5 cross[vx]← cross[xx]− cross[xy]

6 cross[vy]← cross[yx]− cross[yy]

/* Append to result list to finalize relative distance calculation */

7 Append cross to frames

8 meanV ectors← EMPTY LIST

/* Find 10×10 matrix of relative mean x- and y-distances */

9 for Player i in frames do

10 meanDist← EMPTY LIST

11 for Player j in frames do

/* Find mean x- and y-distances of one player to all others */

12 meanx ←
∑
vxi,j/n // for n distance observations between the two players

13 meany ←
∑
vyi,j/n

/* Use x- and y-coordinate to find Euclidean 2D distance */

14 distance←
√
mean2x +mean2y

15 Append distance, meanx, meany to meanDist

16 Append meanDist to meanV ectors

/* Find the centroid of formation by finding most frequent third nearest neighbor */

17 for idx in meanV ectors do

18 centroidCount← EMPTY OBJECT

/* Authors declare 3rd nearest neighbor as centroid */

19 sortedV ectors← sort meanV ectors[idx]

/* Third closest neighbor lies at index 2 of sorted distance list */

20 thirdNearest← sortedV ectors[2]

21 if thirdNearest not ∈ centroidCount then

22 centroidCount[thirdNearest]← 1

23 else

24 centroidCount[thirdNearest] + +

/* Set centroid to be the player with the max count of ID as third nearest neighbor */

25 centroid← max centroidCount /* Starting at the centroid, find closest neighbor, then

closest neighbor of that player, et cetera until all player position are determined

relative to one another */

26 playersList← EMPTY LIST
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Algorithm 1: Shaw and Glickman [66] FORMATION IMPLEMENTATION

/* For every player save its ID and the relative distance to determine position on field.

Centroid starts normalized at (0, 0) */

27 currentP layer ← {id: playerID, vx: 0, vy: y}
28 while currentPlayer not ∅ do

29 old← currentP layer

/* Find idx 0 of sorted distances for current player to find closest neighbor */

30 closestNeighbor ← sort meanV ector[currentP layer][0] /* Update the currentPlayer

variable to iterate through all field players - vx and vy vector build iteratively

from player to player */

31 currentP layer ← {closestNeighbor[id], old[vx] + closestNeighbor[vx], old[vy] +

closestNeighbor[vy]}
32 Append closestNeighbor to players

/* Check if all player IDs are already in the result variable */

33 if PSequenceData \ PplayersList == 0 then

34 currentP layer ← ∅

35 return playersList
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Figure 41: The figure displays the run time distributions of a total of 1,104 sequences (about 10% of the

entire thesis dataset). The distributions highlight the drastic algorithmic improvement from the methods

proposed by Shaw and Glickman [66] on the left to the performance of this thesis’s innovative approach

on the right. The visualization shifts the x- and y-scales for more intuitive comparability of the actual

distributions, understating the actual order of magnitude difference from about 16+ seconds run time

(left) to less than one second (right) per sequence.
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Distribution (seconds) Percentile

Method n min max mean σ 25% 50% 75%

Shaw and Glickman [66] 1,104 0.20 200.01 19.88 20.72 15.56 16.03 19.05

Thesis’ implementation 1,104 0.05 14.07 1.06 1.29 0.78 0.88 0.97

Table 2: The table displays the summary statistics of the run time distributions for the two implemented

solutions to calculate formations. The sample size is n=1,104 for both cases. The run times represent a

wide spread of the relative calculations of Shaw and Glickman [66] with a maximum of 200 seconds and a

mean of almost 20 seconds. This relatively high value stands in contrast to the mean run time of about

one second for the clustering-based approach proposed in this thesis. Following statistical convention, σ

represents the standard deviation of the distributions.

Furthermore, the large spread of the potential run times, indicated by the σ parameter in Ta-

ble 2, demonstrates significantly different implications for the practical use case of a live-system

integration. While both methods inherit a standard deviation of approximately one mean, an

application building on these underlying calculations will suffer from detrimental effects with

run time scenarios of more than 40 seconds. The local machine’s processing power will impact

the absolute run-time calculations in this thesis.42 However, the 20:1 performance improvement

will remain, even if the processing power of the underlying system improves.

However, the isolated increase in performance will not account for much if the results are entirely

different, or even worse, result in incorrect formations. To adhere with algorithmic requirement

P A1 Correct Formation Calculations, the formation quality represents one of the vital

qualities of the system. Chapter 7.2 discusses the overall comparability of the calculated for-

mations with expected formations by experts. Figure 42 offers direct contrast of the results by

this thesis’ implementations of Shaw and Glickman’s [66] algorithm and the original k-means

clustering adaptation.

The anecdotal comparison in Figure 42 features three arbitrary sequences of three teams and

contrasts their calculated formations according to the two approaches at hand. The formations of

Figure 42a, 42c, and 42e represent the relative position coordinates after Shaw and Glickman [66].

These formations seem erratic and sensitive to outliers, while Figure 42b, 42d, and 42f suggest

a smoother and more natural structure of a team’s collective movement. The formations on the

right are normalized to the middle of the field as explained in Chapter 4. Therefore, the axes’

values are incomparable between the left and right sequences. Nonetheless, the overall team

structures indicate similar tendencies, which hints at an overall correct formation calculation.

7.2 Expert Opinion

Interviews with uninvolved parties form the basis for the second part of the evaluation of the

thesis results. Three international domain experts offered to first draw the respective formations

for all teams of the data set, and second, offer critical qualitative feedback to the system itself.

The first part of the interview runs without a previous introduction to the application’s details—

i.e., without seeing it—to avoid bias in their result presentation. This part of the evaluation

quantifies the results of the first portion of the interview. The second part of qualitative feed-

42 The comparison ran on an Intel(R) Core(TM) i5-6200U CPU processor with 2.30 GHz and 8.00 GB RAM.
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Figure 42: The figure compares the resulting formations for the method proposed by Shaw and Glickman

[66] with the clustering approach of this thesis for arbitrary sequences of three teams. The shift on the

x- and y-axis are expected as the k-means approach automatically centers the formation on the field.

The formations seem relatively comparable, while the k-means formations of Figures 42b, 42d, and 42f

portrait a more intuitive and less diffused formation. The algorithm’s robustness to outliers automatically

addresses some of the drawbacks of the alternative’s algorithm.

back builds the backbone of possible extensions and challenges discussed in Chapter 7.3. The

experts offer a comprehensive set of experience and skills to contribute to the system evaluation

accurately. Expert A served as head and assistant coach in a top European league for almost ten
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years. He also holds qualifications as a video analyst and professional scout to complement his

career as an international professional and national team player for almost 20 years. Expert B

worked as an assistant coach in multiple European leagues for close to ten years. His expertise

lies primarily in the superb familiarity with league data of the analyzed data set. Expert C

served as a coach in the second and first leagues in Europe for multiple decades. His expertise

lies in the well-founded knowledge of the data’s discussed league, which qualifies him as a valu-

able asset to benchmark the derived formations.

Two of the three experts (B and C) have exclusively been exposed to the system’s logic through-

out this evaluation process and were therefore not involved in the application’s development

stage. This professional distance is essential to ensure critical unbiasedness and avoid a self-

fulfilling prophecy43 if an application offers the services a user has explicitly requested during

previous development stages.

The interviews were scheduled to last about 90 minutes and held via Zoom44 throughout Febru-

ary 2021. The meeting language was German and involved the experts, as mentioned earlier,

holding Head- or Assistant-coach positions of top European clubs with additional certifications

as professional sports- and video-analyst. The attendants afford a representative sample of

non-technical but highly qualified users confronted with a technical tool built towards intuition.

The following list offers an overview of the tentative schedule for each meeting. However, the

open-ended questions and the exercise in drawing out formations remained flexible in duration,

adapted to the attendee’s schedule and available input.

Agenda for Expert Evaluation of Formation Analysis Tool

0. Welcome and introduction to evaluation (10 minutes):

� Important to explain in detail what the tool is supposed to do and what it is not

1. Ask participants to sketch out the average offensive formation for every team

of the Austrian Bundesliga in webtool (45 minutes):

� Season averages (offense first / defense if asked)

� Formations for Abstoss optional (if time allows offense and/or defense)

� Open-ended questions regarding interesting differences among teams

2. Presentation of the web tool (15 minutes):

� Short presentation of all three tabs

� Focus on main functionalities

43 A self-fulfilling prophecy represents a prediction, whose outcome is dependent on circumstances the predictor

can impact. Therefore, the prediction will naturally come true since the alteration of the relevant variables

alleviates all ambiguity.

44 Zoom is one of the most popular video-conferencing tools. It is most known for its simplicity to attend a

meeting without a necessary account subscription. Find their official website here.

www.zoom.com


63 7 Evaluation

3. Open-Ended qualitative evaluation (15 minutes):

� Specific questions towards what kind of features are desirable / helpful in such a tool

� First impression of things that look helpful, but more importantly things that are

still to improve

An interactive web tool was prepared to conduct the comparison of manual and automatic for-

mation analysis.45 One of the main goals of this part was introducing an intuitive interface,

offering the experts as much familiarity and comfort as possible to illustrate insights into the

formations. Since a tactic board including magnets or a simple drawing of two-dimensional

points offers the analog counterpart to this situation, a drag-and-drop environment for colored

circles on a soccer field afforded the ideal digital compromise. Figure 43 highlights the typical

workflow of a user within the evaluation.
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(c) Final formation for comparison with tool

Figure 43: This illustration shows the core functionality of the interactive dashboard used for the thesis

evaluation. The user can place colored circles on a familiar two-dimensional field layout. The drawing

supports full drag-and-drop functionality to mimic the analog workflow of either drawing or visualizing

formations with magnets on a tactic board. The three figures illustrate the general workflow for a single

team with the initial setup in Figure 43a, the partially drawn formation in Figure 43b, and the finished

formation in Figure 43c, which will subsequently be used for the quantitative evaluation.

The interface offered red circles next to an empty soccer field to illustrate the players’ relative

collective positions in line with familiar formation visualizations. The circle elements were either

empty or filled with one of the three letters D (Defender), M (Midfielder), or F (Forward) to

indicate player positions. The labeled circles’ usage depends on how detailed the expert could

recall each team’s exact formations and remain strictly optional.

45 The service provider used for the interactive exercise is Mural. This website offers interactive dashboards,

mostly geared towards business applications offering intuitive drag-and-drop functionality, which easily extends

to the discussion of sports formations.

www.mural.co
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The displayed steps in Figure 43 were then ideally repeated for all teams, depending on how

certain the interviewee could recite a given team’s formation from memory. The interviewers are

presented with an empty soccer field, prepared in the interactive web-dashboard comparable to

Figure 43a. The attendees continued to move the prepared positional indicator for all teams via

drag-and-drop onto the soccer field to indicate a two-dimensional view of an average formation

for a team.

Formation expectations

Expert 1 Expert 2 Expert 3 Thesis Agreement

Admira Wacker Mödling 3-3-2-2 2-4-3-1 4-4-2 3-3-2-2 low

Austria Wien 4-1-4-1 4-2-3-1 4-2-3-1 4-2-3-1 medium

LASK Linz 3-2-5 3-4-3 3-4-3 3-4-3 medium

Rapid Wien 4-2-3-1 4-2-3-1 4-4-2 4-2-3-1 medium

Red Bull Salzburg 4-3-3 4-2-2-2 4-2-2-2 4-3-3 medium

Rheindorf Alltach 4-3-3 4-3-3 4-3-3 4-3-3 high

Sankt Pölten 3-4-3 4-1-3-2 4-4-2 5-3-2 low

Sturm Graz 4-3-3 4-3-3 4-3-3 4-3-3 high

TSV Hartberg 4-1-4-1 4-2-3-1 4-4-2 4-4-2 low

Wolfsberger AC 4-1-3-2 4-1-3-2 4-1-3-2 4-1-3-2 high

WSG Wattens 3-4-1-2 3-3-2-2 4-2-3-1 4-2-3-1 low

FC Wacker Innsbruck 4-1-4-1 4-1-2-3 - 4-1-4-1 low

Joint prob. of agreement 14/35 16/35 17/35 20/35

Change status quo +42.86% +25.00% +17.65% -

Table 3: The table summarizes the results from the quantitative portion of the expert evaluation. Three

interviewees have provided typical formation blueprints for the teams in the data set, which were compared

to the calculated results in the system. The agreement of the experts dictates the overall estimation

difficulty of a formation—high if all three experts agreed, medium for an agreement of two, and low if

all three experts chose a different formation for a team. The total score of agreed formations is displayed

in the bottom row as the joint probability of agreement. Hence, every expert’s formation can at most equal

three other formations—with one observation missing—, which results in a possible max score of (12 ×
3) - 1 = 35. Additionally, the percentage change of the system to the expert joint probability agreement

measure offers accuracy insights of the experts and the system in the last row.

Table 3 indicates the results of the quantitative evaluation. The columns provide a label for

the two-dimensional classification of the formations for each expert as well as the tool’s results.

For this purpose, the comparative value for the system was the conditional average formation of

a team in the Conditional View—see Chapter 5.2 for a detailed explanation. The last column

offers insights into the relative agreement of the experts excluding the tool. This classification

offers the reader insights on the relative difficulty even for domain experts to classify a team’s

formation. The possible values would be high if a formation were classified similarly or with

the same positions by all experts. The label medium indicates that two of three experts offered

similar predictions but that the third one differs. If all three experts diverged, the label is low,

hinting at widely different interpretations by the experts. To afford the reader a more precise

picture of the extent of similarity that the labels explain, Figure 44 shows three examples from

the data. The rows display illustrations from the interactive tools classified as high, medium, or

low agreement.



65 7 Evaluation



93% 

Zoom settings

FacilitatorThesis Validation - Markus Schopp     All changes saved 1 SHARE   











(a) High agreement Expert 1
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(b) High agreement Expert 2
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(c) High agreement Expert 3
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(d) Medium agreement Expert 1
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(e) Medium agreement Expert 2
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(f) Medium agreement Expert 3
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(g) Low agreement Expert 1
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(h) Low agreement Expert 2
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(i) Low agreement Expert 3

Figure 44: The visualization cluster exemplifies the standards for high, medium, and low agreement

among the interviewed experts. The top row shows three formations for the same team that were catego-

rized as very similar, while the middle row depicts an agreement of two of three experts (here Figure 44e

and Figure 44f). The bottom row indicates high uncertainty and low agreement with all three experts

predicting different formations. The presence or absence of letters in the red circles are a direct result

of the respective expert’s either full-, partial-, or non-usage of the lettered circles. The results were not

altered in any way since the experts have moved the circles.

The row labeled Joint prob. of agreement quantifies the prediction quality. Without a gold-

standard data set, the validity of a prediction is difficult to label correctly. However, in its

nature, soccer formation data is messy and an imperfect representation of players’ collective

movement over time. Therefore, a measure of Inter-Rater Reliability46 is implemented as a

correctness measure. Its interpretation best paraphrases as a measure of correctness implied

by the agreement with domain experts’ repeated opinions. Given the balanced response size

per rater—the number of total responses lies within a significantly close range of either twelve

or eleven teams predicted—the most straightforward value of Inter-Rater Reliability is imple-

mented: joint probability distribution. It measures the ratio of agreed answers to the number of

total answers. The application’s formation prediction was treated like the other experts’ answers

to improve the experts’ comparability with the implemented system. This implementation logic

results in a total number of possible agreements of 35 if every respective prediction equals the

46 Inter-Rater Reliability is an essential concept in survey research. While the broad term is interpreted dif-

ferently for specific use cases, it generally captures the extent of agreement among raters or survey participants.
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other three responses. The numbers were intentionally not converted to decimals to improve

readability. The last row offers a measure of the relative change of agreement from the system to

the respective expert prediction. It calculates a simple percentage change47 in joint probability

agreement of using the proposed system over the expert opinions.
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(a) Formation predicted by domain expert
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(b) Formation calculated by proposed system

Figure 45: The figure displays a common comparison of an expert’ and the system’s formation prediction.

It illustrates how similar the results are for a good fit without any manual interference by a coach.

Figure 45 offers insights on the similarity of an accurate prediction by the system. Figure 45a

depicts a manual prediction of a domain expert, while Figure 45b shows the same formation

automatically calculated by the proposed system.

The results afford exciting and supportive evidence that the system achieved its algorithmic

goal to provide P A1 Correct Formation Calculations. It agrees with at least one of the

experts for every team’s average prediction and scores more total agreements than every other

expert. The score of 20/35 lies 17.64% above its closest competitor and increases the joint

probability of agreement by 42.86% compared to the most idiosyncratic expert. This perfor-

mance demonstrates that with enough data, the system offers a higher degree of certainty than

seasoned experts. This support provides a valuable addition to a coach’s toolkit offering ample

applications ranging from match preparation to direct player coaching.

7.3 Possible Extensions

While the existing results are exciting, the potential for further improvement is substantial.

This chapter lays out potential extensions to the mechanics described in this thesis. It describes

the reasoning for deliberate postponements of feature implementations (Chapter 7.3.1, 7.3.2,

and 7.3.3), or why certain challenges prove excessively difficult to solve (Chapter 7.3.4). It

also outlines the ambition towards the eventual development of a more holistic system through

the incorporation and combination with adjacent systems (Chapter 7.3.5). All chapters include

suggestions for future work on how to best address these challenges.

47 The percentage change formula chosen for this evaluation is: s−ei
ei

, with s as the joint probability of agreement

of the system (20/35) and ei the joint probability of agreement of the respective expert—so, either 14/35,

16/35, or 17/35.
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7.3.1 Causal Design Choices Between Views

The system follows strict design requirements that adhere to iterative development stages and

expert interviews. Nevertheless, the overall application layout leaves room for subjective design-

interpretation. Thus far, the system is structured in three views as visualized by Figure 11 and

explained in Chapter 5. The logic follows a hierarchical structure, where the Cluster View offers

a broad overview of all formation groupings, the Conditional View provides insights into the

team- and match-up-formations, while the Event View investigates match-internal dynamics.

While this layout offers advantages, such as simple interpretability and a flat learning curve

for user-onboarding, predominantly qualitative feedback during the evaluation phase exempli-

fied a potential misalignment with the actual user reasoning process. These users are mostly

uninterested in the vast set of information but rather a specific use case and search for causal

explanations for that particular case. Therefore, a layout conforming with the user’s reasoning

first and the data structure second might prove a valid alternative to the proposed design.

This causal-structure might still incorporate a hierarchy in the data, but the navigation will be

adjusted. The user will either be interested in a specific team or a specific match-up. Therefore,

a filtering of the displayed data upfront might alleviate the massive data set’s initial overwhelm-

ing nature. A Clustering View, similar to the proposed system, will offer an extensive overview

of the selected team’s formations within clusters. The main difference stems from the clickable

interaction of the views. The user can navigate to conditional- or event-based information di-

rectly from the cluster summaries. This adaption to the navigation offers ample adjustments to

visualized information, the overall control flow of the user, and the guidance of causal reasoning.

However, as with every design decision, this adjustment will be accompanied by a trade-off.

A more directed design might prove more convoluted for unpredictable use cases. One of the

design requirements requires the system to adhere to ü S4 Iterative Subsetting , which can

more clearly be stated as “Offer complexity as it is needed“. A causal system predicting the

user’s questions will dictate some of the choices to subset the data and query complexity level.

Ideally, an extension will honor both paradigms in a compromise allowing for a directed but still

unique user-experience.

7.3.2 Additional Event Subsetting

Chapter 5.3 describes the overall functionalities of the Event View. One of the core implementa-

tion features that experts repeatedly mentioned is the exploration of formations during specific

events. Thus far, the long pass of the goalie displays a crucial descriptor for match development

characteristics—how does a team build up its offense along the field. However, to fully align

with the aspired design requirement ü S3 Easy Extensibility , additional events will need to

be included.

These events can comprise standard situations, such as corners, free-kicks, or match beginning,

as well as additional finer subsetting options within the Event View. During the development

stage, the four phases of a game became a focal point of expert interviews—see Chapter 3,

A4. While the incorporated options already address aspects of match evolution, teams’ typical

dynamics by which they build their offense remain difficult to entangle.
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A solution will need to utilize events filtering time frames of interest while incorporating informa-

tion about the relative location on the field. Typical offense developments start with a lost ball

or a missed opportunity by the opponent. Ball and player positions will help to flag these phases

and compare the most informative time frames. This logic might include a finer subsetting of

formation sequences than the two-minutes sequence logic defined in this thesis—see Figure 6.

Two-minute sequences might prove reliable and robust for entire match insights, but the nature

of a fast-paced game, such as soccer, could prove too volatile to be coherently understandable

using this broad categorization. Nevertheless, this refinement will be highly use-case-specific

and requires trial and error to weigh the pros and cons of alternative formation period durations.

Another possible extension of interest might be an indicator for defensive pressing behavior.

The inclusion of pressing, i.e., high-pressure defense by potentially more than one defender, and

describing the offense’s reaction, became a recurring subject during feedback interviews. A sub-

setting to pressing situations enhances a coach’s decision-making, understanding of opponents’

reactions, and adequate match preparation. It requires an analysis of event data, where quick

passes and turnovers might prove a valid starting point, with spatial data of high-density de-

fender situations. Since this analysis will require the visualization of dynamic decision-making,

an adjustment to the entire system’s static nature might be necessary. See Chapter 7.3.5 for a

proposed extension addressing a more dynamic solution.

7.3.3 Alternatives to K-means as Clustering Algorithm

This thesis thrives on its algorithmic improvements to the status quo of formation calculation.

The computational complexity decreases to a fraction of current best practices. This acceleration

builds one of the main ingredients to the immediate responsiveness of the app design. However,

while the thesis offers extensive explanations for incorporating a clustering algorithm in the first

place, it proposes no clear reasoning for the use of k-means over alternative clustering algorithms.

Once the problem of insufficient run times became prevalent, the pressure to find a working

and straightforward alternative to the slow algorithms incorporated in the field [10, 66] led to

the most prominent and reasonable solution. K-means offers everything the system requires: a

predefined number of clusters (k), no further assumptions about the data distribution, and an

intuitive interpretation. The time complexity of O(n2) becomes negligible because the algorithm

usually runs on 2,400 observations for a single sequence, where quadratic time complexity proves

sufficient.

However, this reasoning should not discourage further developments to the clustering solution

for formation determination. The closest neighbors to k-means are usually natural refinements

to the vanilla algorithm. The following list provides an overview of center-based candidates for

the clustering solution48 as well as the pros and cons of the implemented k-means solution:

48 A natural extension to this list will also consider broader alternatives to the clustering algorithms. An inter-

esting group will be the cohort of expectation-maximization clustering algorithms.



69 7 Evaluation

1. K-means

K-means represents the implemented clustering solution in this thesis. Appendix A out-

lines the calculation details and underlying logic. The algorithm runs in O(n2).

Advantages and Disadvantages:

+ Simplest solution to implement for the given use case of ten predefined clusters.

− Potentially converges to a local minimum.

− Efficient solutions usually implement the algorithm with the Euclidean Distance,

which limits the flexibility.

2. K-medoids

K-medoids is one of the most natural refinements to the k-means algorithm [49]. It chooses

actual data points as the cluster centroids and also runs in O(n2).

Advantages and Disadvantages:

+ Allows for more interpretability of cluster centers as actual player locations.

+ Affords increased robustness to noise and outliers.

+ Accepts alternative dissimilarity measures than the Euclidean Distance.

− All of the regular drawbacks of k-means, such as local optimum convergence or de-

pendence on initial values, still apply.

3. Fuzzy C-means

Fuzzy C-means clustering [8, 20] extends the k-means algorithm to a fuzzy49 clustering

logic. It operates similar to the k-means minimization of the total distance to the prede-

fined number of centroids, but also adds a membership value wi,j where each wi,j describes

the degree to which a data point xi belongs to cluster cj . It also requires the fuzzifier m ∈ R
with m ≥ 1 determining the cluster fuzziness with larger m resulting in smaller member-

ship values wi,j .

Advantages and Disadvantages:

+ Introduces the notion of the likelihood for a given player to play at a specific location.

− More necessary assumptions need to be made beforehand (m to determine how fuzzily

the allocation operates).

− All of the regular drawbacks of k-means, such as local optimum convergence or de-

pendence on initial values, still apply.

4. K-harmonic means

K-harmonic means alters the objective function of k-means—the total distance metric—

to an Harmonic Average metric. The Harmonic Average describes the reciprocal of the

49 Fuzzy boundaries refer to classification or clustering approaches that group elements usually via a probability

or weighting metric into multiple clusters. They contrast the distinct logic of hard clustering, where each data

point belongs to one cluster.
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arithmetic average of the numbers’ reciprocals in a set. It is most applicable to find the

average of rates or average travel speed because it alleviates the necessity to find common

denominators of the included fractions. The following formula describes this calculation.
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n
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+ 1
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+ · · ·+ 1
xn

=
n∑n

i=1
1
xi

=

(∑n
i=1 x

−1
i

n

)−1
,

where x1, x2, ..., xn are positive real numbers. Zhang et al. [91] outline the full derivation

of the objective function, which exceeds this brief overview’s scope.

Advantages and Disadvantages:

+ Results are independent of cluster initialization.

− Computationally more costly than k-means.

− Results can still converge to a local minimum.

This brief overview does not aim to provide an exhaustive list of possible extensions but offers a

starting point for future work. While k-means outperforms the current best practices in the field,

it suffers from ignorance of data-specific properties. Therefore, an improved approach to fine-

tune the clustering solution for formation calculations could alleviate particular challenges, such

as accurately identifying the exact player covering a specific location on the field and preserving

some of the more granular notions of formation shifts. K-means’ main strength lies in its

simple implementation, intuitive interpretation, and fast run time. Any clustering approach that

preserves these properties while potentially addressing inherent drawbacks presents a valuable

enhancement.

7.3.4 Improved Possession Derivation

One of the major challenges of calculating different formations is the exact determination of

possession. Here, the possession of the ball distinctly defines which team is in offense and

defense. Chapter 4 outlines the backbone of the heuristic used in this thesis. It builds on an

event-based subsetting of time frames to introduce candidate time frames for when a given team

controls the ball. However, qualitative feedback explained in Chapter 7.2 explains significant

differences in real-world behavior by a team in offense and defense. This phenomenon is not

observable in our data. As Figure 17 in Chapter 5.1 illustrates, most clusters center around a

50:50 split between offensive and defensive formations. The discrepancy to the expected behavior

might stem from three main reasons:

1. While the thesis implements measures to increase robustness–the two-minute segmentation

of time frames illustrated in Figure 6 and the deletion of possessions under five seconds—it

might still include a majority of quick exchanges of possession. This characteristic could

then lead to the classification of spurious formations and resemble a more chaotic behavior

than a structured shift from offense to defense.

=⇒ While possible, the probability of this atypical tendency tainting enough possessions

of all sequences seems low.
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2. The inspected European league behaves erratically in comparison to the expected behavior

of top leagues. The data set under examination represents a smaller European league’s

characteristics, which might not be as evolved as other top leagues and could behave

differently than the experts expect.

=⇒ The experts are experienced in international and specifically in the league’s national

data. This personal background did not stop them from expecting varying formations

between offense and defense. Therefore, the league’s idiosyncratic structure should not

account for the formation’s peculiar distribution between offense and defense.

3. The thesis heuristic for offense and defense formation misses the intricacies of the data.

It utilizes events associated with a specific player to determine the possession at that

exact time frame. As long as no other event occurs, the team is assumed to remain

in possession until an event featuring a player of the opposing team occurs, which then

switches the possession flag. This logic excludes a list of events—see Chapter 4—which are

not associated with a specific player. The approach might suffer from either data quality

concerns or the general heuristic of event subsetting, which proves too simplistic to catch

the complex concept of possession.

=⇒ This appears to be the most likely cause of the inaccuracy, which needs further

fine-tuning.

The challenge of real offense and defense determination is prevalent throughout the soccer and

tracking literature. Thus far, events exclusively determine the relevant time frames for which

a team is in possession. However, while simplistic enough to address a broad division, finer

propensities, especially relevant for formation analysis, will be lost. Future approaches will have

to combine the event and tracking data to build a holistic picture of the field’s location. Hith-

erto, approaches largely ignore ball and player locations because of the noise it introduces. First

and foremost, an exact derivation of possession exceeds the simple comparison of the distance

between players and ball; otherwise, every pass across the field will result in multiple incorrect

possession flags.

Nevertheless, a cohesive and intricate combination of the event and tracking data might offer

insights, while this thesis’s heuristics are based solely on event data incorporation. Therefore, a

proposed next step to solve this puzzle incorporates both data sources and the inclusion of prob-

abilities for possession depending on the location on the field. Machine learning solutions can

build advanced classifiers utilizing all three sources to improve the forecast accuracy for posses-

sion possibility. The main challenge will be to align these advanced solutions with computational

requirements of fast processing to address practicality concerns of its use cases.

7.3.5 Dynamic Interactions

The system’s goal is ambitious in its very nature: describe the collective movements of groups

of people to distill a footprint that describes tendencies to exploit strategically. The application

offers a leap towards an accurate static description of how teams behave in specific situations.

However, soccer is dynamic, and players react to situations independent of their formation as-

signment. They prepare and train for overall formations, but more on a more granular level,
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incorporate dynamically changing information of specific passes, defensive pressure, and spac-

ing alterations into their decision-making and behavior. To illustrate it with an example: if a

soccer team were an orchestra, the formation would be the composition of the instruments on

stage. However, the harmonies, the intricacies of volume, individual skill levels, and the collec-

tive melodic timing represent the ingredients that bring the notes to life. These corresponding

insights in soccer should be the grand goal of a supportive system of automatic data analysis.

Core steps towards this ambitious goal include formation information with an interactive dash-

board. The user’s expertise should drive explorative data analysis, moving players while other

players react dynamically. This extension combines a similar interface to the evaluative inter-

views described in Chapter 7.2 with an AI-powered back end. It combines this thesis’s formation

information with dynamic responses to interactive user-input. Experts can mimic typical match

situations with an intricate interplay visualized by the system. Exciting work in this field is

currently under submission [63] which addresses some of these goals. This sketching tool affords

the facilitation of data queries for massive data sets through an interactive drawing board. The

user can sketch any situation, and the back-end logic of the board will highlight matches and

situations of specific teams that correspond with the drawn sequence.

(a) Formation analysis of kick-off situations to the left midfield (b) Successful build-up play

(c) Successful attacks over the right midfield (d) Attacks from the midfield that blocked in the penalty area

Fig. 5: Our invited experts investigated several situations during our expert studies. Fig. 5 (a) and Fig. 5 (b) show the analysis of build-up play
situations while Fig. 5 (c) and Fig. 5 (d) focus on specific attack patterns. We rarely noticed that experts placed more than three magnets until they
were satisfied with their described situation.

6.1 Expert Studies

In our expert studies, we investigated the concept of our systems and its
multi-match analysis capabilities with each expert individually. Before
starting a study, we introduced each expert to the system and its avail-
able interaction and analysis features. In the following, each expert
could investigate eleven example analysis tasks (build-up play, mid-
field organization, attack situations) as well as openly navigate through
the system and try out all available analysis features. Both experts
were encouraged to express ad hoc comments while we took notes and
recorded all interactions with the system for subsequent analysis. Addi-
tionally, we performed open discussion rounds asking related questions
such as suggestions for improvement. Ultimately, we were interested
in determining whether our proposed system would find a place in their
day-to-day analysis routine.

Both experts found numerous interesting patterns and gained valu-
able insights while using our system. Due to the limited space, we
restrict ourselves in the following to the most interesting findings and
types of analysis our experts performed. A selection of match situa-
tions our invited experts searched for can be seen in Fig. 1, 4, and 5.
In Fig. 1, one expert analyzed the behavior of players during slow low
build-up plays starting from the goalkeeper. The goalkeeper is passing
the ball to the left defender, who then tries to pass the ball towards the
left central midfield. The expert was highly interested in the behavior
of the attacking red player who repeatedly tried to put pressure on
the ball possessing player and then oriented himself backward. The
clearly visible repeating similar movement behavior enabled Expert B
to discuss several counter-strategies that should be communicated with
this team. Expert A performed a similar analysis in Fig. 5 (a). Here,
he investigated six matches of his team against the same opposing
team analyzing long kick-offs from his (blue) team that were directed
towards the left midfield. While analyzing the identified 33 kick-offs
towards the left midfield, Expert A noticed that almost all kick-offs
were unsuccessful with the consequence of losing the ball immediately
to the opposing team. The expert informed us that this provides strong
evidence for his hypothesis that his team is struggling with duels and
headers after crosses. He noted that he was impressed that he found
all relevant kick-off situations of six matches in seconds on his own by
placing and moving only the goalkeeper and ball magnet on the virtual

tactic-board. Afterward, he searched for kick-off situations towards the
center midfield (Fig. 5 (b)). Here, he found that one of his players was
repeatedly able to successfully take possession of the ball and pass to
his team member inside the opposing penalty box. He inspected the
animation for each scene and confirmed that this player is performing
better and should be targeted more often in long kick-offs. Besides
build-up situations, both experts were interested in attack situations
from the midfield towards the opposing goal (Fig. 5 (c) and Fig. 5 (d)).
In Fig. 5 (c), the experts were interested in situations where the blue
team was successfully finding ways to pass towards the right area of
the opposing penalty box and, afterward, crossing into the penalty box
and shooting on the goal. To achieve this, they repeatedly used region
queries while moving the ball magnet from the center midfield towards
the sides, the penalty box, and then the opposing goal. Here, the experts
noticed that this kind of attack over the right side occurred twelve times
in a particular match while only rarely in the other matches. Upon
inspecting the animated situations and visualized identified clustered
formations, our experts quickly found that this imbalance is due to a
player and formation change in the specific match which has had an
impact on their tactical behavior. Ultimately, in situations such as the
one depicted in Fig. 5 (d) the experts had the idea to actively search for
unsuccessful attacks that were successfully blocked in the penalty box.
The experts searched for these blocked attacks to learn how teams with
a similar playstyle blocked attacks against the upcoming opposing team.
They pursued this analysis in particular as detecting weaknesses of an
upcoming opponent enables them to optimize training processes and,
for example, identify where the chances of capturing the ball during
the match are the highest.

6.2 Insights
According to both invited experts, magnetic tactic-boards play an es-
sential role during match preparation as well as during a match itself.
Especially in time-critical situations such as the half-time break, tactic-
boards are being used extensively in combination with video recordings
to prepare their players for specific match situations and communi-
cate tactics. Tactic-boards are considered as convenient mediums for
communication of tactical behavior as coaches can display a variety of
match situations very simply and highlight affected players enabling
them to put themselves in the depicted situation.

Figure 46: Figure 5 of Seebacher et al. [63] illustrates the workflow and the potential that a dynamic

sketchboard has for efficient queries of large data sets within a comfortable and intuitive framework.

This sketching, which mainly serves as a querying tool, can benefit from the formation analysis’s

informative insights. By extending functionalities with interactive drag-and-drop components

triggering relative player movements, the frontier of possible angles to analyze collective move-

ment behavior will shift dramatically.

The main impediment to this goal will be an efficient algorithmic logic. This thesis has shown

a computationally faster alternative to derive formations, but this envisioned solution requires
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further extensions to solve the more complex use case of responsive team movements. Ad-

ditionally, it will build on machine learning logic to explore potential player movements that

did not necessarily occur. Efficient implementations will leverage adjacent work in the field of

What-if -analysis in soccer [74] and its real-time adaptation.

8 Discussion & Conclusion

This thesis’s primary goal is to offer insightful information for soccer stakeholders with a mea-

surable impact on teams’ success. Analyzing team formations has allowed us to describe and

assess collective movements and, therefore, quantify one of the few direct strategic channels by

which a coach can influence his team’s collective behavior. The demand for incorporating data

science practices and principles into sports, and especially into soccer, is on the rise. While the

literature on formation analysis is growing, a disconnect between scientific insights and practi-

cal solutions has limited this developing field’s impact. Through a thorough interviewing and

development stage, we have isolated necessary ingredients to close this research gap and pre-

scribed design requirements for a system that combines scientific rigor with an intuitive and

user-friendly layout. The result culminates in a formation analysis tool that offers faster, more

accurate, and more intuitive insights than any past solution.

The main contributions of this thesis are four-fold. It improves the algorithmic speed to a frac-

tion of previous solutions (Chapter 8.1) while improving the forecasting accuracy beyond the

level of trained professionals (Chapter 8.2). It allows for multi-match comparison of formations

while providing novel visualization options of inter-match analyses (Chapter 8.3), and it com-

bines these advancements in an intuitive design developed in close collaboration with domain

experts to solve real practical challenges in the field (Chapter 8.4). The thesis closes with con-

cluding remarks (Chapter 8.5).

8.1 Improved Algorithmic Performance

The proposed system visualizes formations, but at its heart lies a novel way to calculate the av-

erage position of collective movement patterns to describe a soccer formation over a pre-defined

period. These novel calculation methods offer a temporal complexity that is twenty times faster

than our implementation of the current status quo (Figure 41). Solutions in past work [66]

were designed for purely scientific use cases, where real-time performance speed is unimportant.

Calculation times of close to twenty seconds are impractical for a system developed to offer

immediate feedback and real-world implementation. The run times are also more centered (see

Figure 41), which is suggestive of more reliable results with smaller distributional tails, i.e., less

frequent outliers for the process run times. Given the necessary assumptions for a compara-

tive implementation, this approach not only decreases run times dramatically but also produces

smoother, more natural formations that depict less sensitivity to outliers (Figure 42).
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8.2 Improved Predictive Accuracy

Extensive validation interviews allowed objective evaluations to compare the calculated results

to practical knowledge. Two major conclusions emerged from these interviews:

1. Formation prediction is difficult. This characteristic stems from multiple reasons, but

collective movements’ continuous nature challenges most attempts to discretize these data

into average positions. Formations are also continuously changing and might be impacted

by various factors: coaching style, player availability, specific match-up, seasonal standings,

or period during a match. Even manual classification of formations by domain experts with

a seasoned background in the industry only agree on a fraction of forecasts. Figure 44 and

Table 2 reflect this discrepancy by exemplifying the degrees of disagreement with examples

from the interview sessions.

2. Our system results in more agreement within the sample space of predictions than any

individual expert. The implemented system also exhibits a 17.65% increase in the joint

probability agreement—a measure of the inter-rater reliability— over the current best ana-

log predictor (Table 3).

8.3 Inclusion of Multi-Match Functionalities

In addition to increasing the speed and accuracy of formation forecasting, our system also

improves previous work by offering multi-match functionality. Previous efforts to visualize col-

lective movements primarily aimed towards scientific applications and detailed single-match

analysis. This limitation decreases the informative value to compare matches and teams dy-

namically through a more extensive time-series analysis. Although some research projects have

expanded their data samples beyond single matches, they have not offered a system to visualize

and analyze this rich data interactively. This thesis offers the first system that combines the

best of both worlds, introducing an application design that efficiently manages the formations’

calculation while also providing the capability for multi-match comparisons.

8.4 Development of an Intuitive App Design

The development of the application produced by this thesis implements design requirements

derived from interviews with domain practitioners (Chapter 3). These needs then dictated the

derivation of four P Algorithmic Requirements, four ü Search/Subsetting Require-

ments, and four ÿ Visualization Requirements. The entire web layout, including the

macro separation of individual tabs, the simple micro option-subsetting intuition, and the inclu-

sion of practical features, solve the search and visualization requirements. This cumulative effort

of a consistent end-user first experience resulted in a design that experts described as intuitive

and comfortable during the qualitative session of the interviews (Chapter 7.2).
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8.5 Concluding Remarks

This thesis offers advancement to the field of applied computer science. It introduces a sys-

tem that outperforms seasoned experts in prediction accuracy, improves algorithmic standards,

and combines these benefits into an intuitive application that reflects practicality and design

requirements. This application, which pushed modern soccer research boundaries past existing

benchmarks, enables coaches to transform data science insights into tangible improvements to

team performance. These performance improvements could translate to larger profits for the

soccer organizations utilizing the application. By building upon the recommendations of experts

through reflective feedback collection, this thesis also lays out a wide array of challenges and

potential solutions for future work to push soccer research boundaries even further.
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[24] Pasi Fränti and Sami Sieranoja. How much can k-means be improved by using better

initialization and repeats? Pattern Recognition, 93:95–112, 2019.

[25] Mengran Gou, Srikrishna Karanam, Wenqian Liu, Octavia Camps, and Richard J Radke.

Dukemtmc4reid: A large-scale multi-camera person re-identification dataset. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages

10–19, 2017.

[26] Sachiko Iwase and Hideo Saito. Tracking soccer players based on homography among

multiple views. In Visual Communications and Image Processing 2003, volume 5150, pages

283–292. International Society for Optics and Photonics, 2003.

[27] Halldor Janetzko, Dominik Sacha, Manuel Stein, Tobias Schreck, Daniel A Keim, Oliver

Deussen, et al. Feature-driven visual analytics of soccer data. In 2014 IEEE conference on

visual analytics science and technology (VAST), pages 13–22. IEEE, 2014.



78 References

[28] Robert E Kass and Adrian E Raftery. Bayes factors. Journal of the american statistical

association, 90(430):773–795, 1995.

[29] Harold W Kuhn. The hungarian method for the assignment problem. Naval research

logistics quarterly, 2(1-2):83–97, 1955.

[30] Urho M Kujala, Simo Taimela, Ilkka Antti-Poika, Sakari Orava, Risto Tuominen, and Pertti

Myllynen. Acute injuries in soccer, ice hockey, volleyball, basketball, judo, and karate:

analysis of national registry data. Bmj, 311(7018):1465–1468, 1995.

[31] Jim ZC Lai and Yi-Ching Liaw. Improvement of the k-means clustering filtering algorithm.

Pattern Recognition, 41(12):3677–3681, 2008.

[32] Yongjin Lee and Seungjin Choi. Minimum entropy, k-means, spectral clustering. In 2004

IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541),

volume 1, pages 117–122. IEEE, 2004.

[33] Dawei Liang, Yang Liu, Qingming Huang, and Wen Gao. A scheme for ball detection

and tracking in broadcast soccer video. In Pacific-Rim Conference on Multimedia, pages

864–875. Springer, 2005.

[34] Jia Liu, Xiaofeng Tong, Wenlong Li, Tao Wang, Yimin Zhang, and Hongqi Wang. Auto-

matic player detection, labeling and tracking in broadcast soccer video. Pattern Recognition

Letters, 30(2):103–113, 2009.

[35] Sergio Llana, Pau Madrero, Javier Fernández, and FC Barcelona. The right place at the

right time: Advanced off-ball metrics for exploiting an opponent’s spatial weaknesses in

soccer. In Proceedings of the 14th MIT Sloan Sports Analytics Conference, 2020.

[36] Patrick Lucey, Dean Oliver, Peter Carr, Joe Roth, and Iain Matthews. Assessing team

strategy using spatiotemporal data. In Proceedings of the 19th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 1366–1374, 2013.

[37] Jonathan Ma. An Analysis of Formation Disruption in Soccer. PhD thesis, 2020.

[38] James MacQueen et al. Some methods for classification and analysis of multivariate ob-

servations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and

probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[39] Md Sohrab Mahmud, Md Mostafizer Rahman, and Md Nasim Akhtar. Improvement of

k-means clustering algorithm with better initial centroids based on weighted average. In

2012 7th International Conference on Electrical and Computer Engineering, pages 647–650.

IEEE, 2012.

[40] Andrii Maksai, Xinchao Wang, and Pascal Fua. What players do with the ball: A physically

constrained interaction modeling. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 972–981, 2016.

[41] Daniel Memmert, Koen APM Lemmink, and Jaime Sampaio. Current approaches to tactical

performance analyses in soccer using position data. Sports Medicine, 47(1):1–10, 2017.



79 References

[42] James Munkres. Algorithms for the assignment and transportation problems. Journal of

the society for industrial and applied mathematics, 5(1):32–38, 1957.

[43] Christopher Mutschler, Holger Ziekow, and Zbigniew Jerzak. The debs 2013 grand chal-

lenge. In Proceedings of the 7th ACM international conference on Distributed event-based

systems, pages 289–294, 2013.

[44] Takuma Narizuka and Yoshihiro Yamazaki. Characterization of the formation structure in

team sports. arXiv preprint arXiv:1802.06766, 2018.

[45] Takuma Narizuka and Yoshihiro Yamazaki. Clustering algorithm for formations in football

games. Scientific reports, 9(1):1–8, 2019.

[46] Catherine D Newell, Mark D Wood, Kathleen M Costello, and Robert B Poetker. Auto-

matic story creation using semantic classifiers for digital assets and associated metadata,

January 13 2015. US Patent 8,934,717.

[47] Yoshinori Ohno, J Miurs, and Yoshiaki Shirai. Tracking players and a ball in soccer games.

In Proceedings. 1999 IEEE/SICE/RSJ. International Conference on Multisensor Fusion

and Integration for Intelligent Systems. MFI’99 (Cat. No. 99TH8480), pages 147–152.

IEEE, 1999.

[48] Ingram Olkin and Friedrich Pukelsheim. The distance between two random vectors with

given dispersion matrices. Linear Algebra and its Applications, 48:257–263, 1982.

[49] Hae-Sang Park and Chi-Hyuck Jun. A simple and fast algorithm for k-medoids clustering.

Expert systems with applications, 36(2):3336–3341, 2009.
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[58] Aaditya Ramdas, Nicolás Garćıa Trillos, and Marco Cuturi. On wasserstein two-sample

testing and related families of nonparametric tests. Entropy, 19(2):47, 2017.

[59] Stephen J Roberts, Richard Everson, and Iead Rezek. Minimum entropy data partitioning.

1999.

[60] Stephen J. Roberts, Christopher Holmes, and Dave Denison. Minimum-entropy data par-

titioning using reversible jump markov chain monte carlo. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 23(8):909–914, 2001.

[61] Dominik Sacha, Feeras Al-Masoudi, Manuel Stein, Tobias Schreck, Daniel A Keim, Gennady
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Appendix

A K-Means

The K-means clustering approach aims to separate a set of n-dimensional vectors into k clusters.

The overall algorithm minimizes within-cluster distances (the points within a grouped cluster

are as similar as possible) while maximizing the between cluster distance (clusters themselves

are as different as possible). Initially, the main applications of the method lie within the field

of signal processing (the name “k-means“ first appeared in section 3 of MacQueen et al. [38],

which borrows heavily from the work of Steinhaus [77]).

(a) Initial random centroid location (b) Points are assigned to closest centroid

(c) Update of centroid locations and point as-

signment

(d) Convergence when no assignment changes

Figure 47: A short illustration of the k-means algorithm, based on the interactive visualization of the

EduClust platform by the Data Analysis and Visualization department of the University of Konstanz.

Here, a dataset of 500 2D points, resembling a 4-1-4-1 soccer formation, with 10 clearly distinct clusters

(for the players) are grouped using 10 as the value for the k-parameter. After initial assignment a fast

convergence towards the final cluster assignment can be exemplified from step (a) to (d).

The approach assigns k random points (optimization with more efficient start positions can be

found in [13, 31, 39, 49, 85]) to the vector space, so-called centroids. These centroids are then

assigned all the points, which are closest to them. The next step updates the centroids’ position

to the mean of the assigned points. Iteratively, the points the algorithm assigns the points to

https://educlust.dbvis.de/
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their centroids given their new position before the centroids move again. The clustering reaches

convergence when no point locations change anymore, and therefore the centroid position has

reached a stable location within the vector space. This separation of the total space into Voronoi

cells remains decently robust to outliers. Figure 47 provides a step-by-step visualization of the

algorithm.

B Hungarian-/ Kuhn–Munkres-Algorithm

The Hungarian algorithm solves an assignment problem in polynomial time. Harold Kuhn first

developed it in 1955 [29] with time complexity of O(n4),50 however, Edmonds and Karp, and

independently Tomizawa, derived solutions in O(n3) [21, 81]. The algorithm addresses trans-

portation allocation, job assignment, and even the infamous traveling salesman problem [19].51

The following example demonstrates the workings of the algorithm. Assuming we are given a

toy example of three actors moving to three cities. We are trying to minimize the total distance

for all three friends to move to these cities, therefore try to minimize the distance allocated by

moving the three friends to exactly one city. The following table shows the distances:

City One City Two City Three

Agent A 200 km 300 km 300 km

Agent B 300 km 200 km 300 km

Agent C 300 km 300 km 200 km

Table 4: The table provides the necessary input for the illustrative toy example for the application of the

Hungarian Algorithm. Three agents are living within a certain distance to three cities, where they are

trying to move. Every agent needs to end up at exactly one city and the Hungarian Algorithm finds the

optimal assignment to minimize the total distance between all assignments.

This table is simply translated to a cost matrix C

C =

200 300 300

300 200 300

300 300 200

 .

50 Big O, or short “O(X)“ describes the limiting behavior of a function and is excessively used to describe the

efficiency of algorithms. Here X is replaced with a function of n, where n is the data input to the algorithm.

While efficiency will vary widely between tasks, constant time O(1), logarithmic time O(log(n)), and propor-

tional time O(n) time are considered fast algorithms, while O(np) - with p > 1 - or even O(xn) - with x > 1 -

are considered inefficient algorithms. The classification might not matter as long as the input data size remains

relatively small.

51 Traveling Salesman Problem describes a popular problem in combinatorial optimization, theoretical com-

puter science, and operations research. It asks the seemingly simple question: “Given a list of cities and the

distances between each pair of cities, what is the shortest possible route that visits each city exactly once and

returns to the origin city¿‘. It is NP-hard and extends to its neighbors of traveling purchaser problem and the

vehicle routing city.
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A left and right permutation matrix52 multiply with the original matrix. This calculation re-

sults in precisely one specific assignment of the agents to each city per possible 4×4 permutation

matrix.

By minimizing the trace,53 the algorithm defines the minimal entry per row (column) iteratively,

subtracts its value from the other entries of the row (column) to find the optimal assignment.

The approach translates to a minimization of the trace. Multiplication of the cost matrix with

the left and right permutation achieves this calculation

min
L,R

Tr(LCR).

The algorithm will then find the optimal solution to this toy example as the minimum total

distance to be 600 km, with agent A moving to City One, agent B moving to City Two, and

agent C moving to City Three.

For a more detailed step-by-step example, please refer to this illustration. Alternative solu-

tions exist, which are somewhat more involved and utilize graph-theoretical approaches for the

common problem of maximum-weight matching in bipartite graphs.

C Bayesian Model Selection

Frequently researchers are interested in formalizing the correct model to mimic real-world be-

havior. However, what is a model? A model is a parametric family of probability distributions,

each of which can explain the observed data. Classical statistics uses hypothesis testing with

pre-defined significant values and confidence intervals to measure a hypothesis’s truthfulness by

how robustly it withstands contrary evidence. Bayesian methods differ most notably in their

inclusion of prior knowledge to the derivation of these decisions. The Bayes formula describes

a posterior probability of a model M , given a data D, as the product of the data distribution

being plausible given the model assumption times the probability that of the model occurring.

Classically, the following equation describes this relationship

Pr(M | D) =
Pr(D |M) Pr(M)

Pr(D)
.

For our purposes, this canonical description will need to extend to a finite number of models Mi

and therefore the equation becomes:

Pr (Mi | D) =
p (D |Mi) Pr (Mi)∑
j p (D |Mj) Pr (Mj)

By setting Pr (Mi) to a uniform distribution, we can write the probability p (D |Mj) as

p (D |Mi) =

∫
p (D | θi,Mi) p (θi |Mi) dθi.

52 Permutation Matrix is a square binary matrix with exactly one entry of 1 and just 0’s elsewhere per row

and column. Intuitively it is used in combination with other matrices to turn features on or off by allowing

feature (row and column features) to persist past the multiplication.

53 Trace of a square matrix represents the sum of its diagonal elements.

https://brilliant.org/wiki/hungarian-matching/
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Two models can then be compared by combining them to a Bayes Factor

K =
Pr (D |M1)

Pr (D |M2)
=

∫
Pr (θ1 |M1) Pr (D | θ1,M1) dθ1∫
Pr (θ2 |M2) Pr (D | θ2,M2) dθ2

=

Pr(M1|D) Pr(D)
Pr(M1)

Pr(M2|D) Pr(D)
Pr(M2)

=
Pr (M1 | D)

Pr (M2 | D)

Pr (M2)

Pr (M1)
.

The following table from Kass and Raftery [28] provides an intuition of the degree of evidence

necessary to choose one model over the other.

log10K K Strength of evidence

0 to 1/2 1 to 3.2 Not worth more than a bare mention

1/2 to 1 3.2 to 10 Substantial

1 to 2 10 to 100 Strong

>2 >100 Decisive

Table 5: This table by Kass and Raftery [28] provides an overview of the degree of evidence necessary to

choose one model over another using Bayesian Model Selection methods.

As a quick aside, this characteristic of Bayesian model selection introduces the notion of pref-

erence for simpler models over more complex ones. Naturally, more complex models explain

more datasets; therefore, their support in the sample space is more substantial. However, these

models also generalize worse to the population space of explaining models in general. This ambi-

guity translates to an inherent cost to move towards more complex models by failing the simpler

models’ broad generality - an inbuilt Occam’s razor.54

D Wasserstein Distance

The Wasserstein distance,55 or Kantovich-Rubinstein metric defines a distance metric between

two probability distributions on a given metric space M. It is first introduced in 1974 [83] and

is often also referred to by earth-movers-distance.

It describes a formulation of the common optimal transportation problem.56 In its canonical

description, a re-formulation first translates the distributions to a set of clustered points, where

both distributions do not need to translate to the same number of clusters and a set of cluster

weights for each cluster based on the number of points of the original distribution represented by

the cluster. This representation is called a signature and will facilitate the theory explanation

of the earth-movers-distance.

54 Occam’s razor describes a problem-solving principle, which, given comparable results, will always prefer

more straightforward solutions to more complex ones. “The simplest solution is usually the right one“, often

paraphrases this relationship.

55 This section borrows heavily from the excellent articles [2, 4] and is expanded for better intuition by personal

remarks and examples.

56 The Optimal Transportation Problem assumes that several suppliers, each with a given amount of goods,

are required to supply several consumers, each with a given limited capacity. For each supplier-consumer pair,

the cost of transporting a single unit of goods is given. The transportation problem is then to find the least-

expensive flow of goods from the suppliers to the consumers that satisfies the consumers’ demand. Similarly,

the problem is transforming one distribution P to another distribution Q with minimum work done.
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So, we have P ’s signature as the set of cluster and weight pairs

P = {(p1, wp1) , (p2, wp2) , . . . , (pm, wpm)} ,

where pi is the cluster representation and wpi > 0 corresponds to its weight. Similarly, the

distribution Q will correspond to the signature:

Q = {(q1, wq1) , (q2, wq2) , . . . , (qn, wqn)} .

The ground distance between clusters pi and qi, which we will try to minimize can be represented

as

D = [di,j ] .

The algorithm’s task is now to find the flow (the weight shifting from one signature to the other)

that minimizes the cost. Let us define the flow as

F = [fi,j ] ,

with fi,j being the flow between pi and qi. To find the optimal solution, we need to define the

overall cost to minimize as

min
m∑
i=1

n∑
j=1

fi,jdi,j ,

subject to the constraints

lfi,j ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n,
n∑

j=1

fi,j ≤ wpi, 1 ≤ i ≤ m,

m∑
i=1

fi,j ≤ wqj , 1 ≤ j ≤ n,

m∑
i=1

n∑
j=1

fi,j = min


m∑
i=1

wpi,

n∑
j=1

wqj

 .

Intuitively, the solution to this linear optimization problem results in the work to be done (to

stick with the moving earth analogy) normalized by the total flow

EMD(P,Q) =

∑m
i=1

∑n
j=1 fi,jdi,j∑m

i=1

∑n
j=1 fi,j

.
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Function A Function B Wasserstein Distance

Figure 48: This illustration exemplifies the Wasserstein distance-equation comparing two arbitrary non-

Gaussian distributions (red and blue). Their distance, or the effort of moving from one distribution to

the other is highlighted in dark gray.

Figure 48 illustrates how to understand the Wasserstein distance in 2D for non-Gaussian dis-

tributions. For the case of two normal distributions with means m1 and m2 and symmetric

positive semi-definite57 covariance matrices C1 and C2, Olkin and Pukelsheim [48] derive the 2-

Wasserstein distance between µ1 and µ2, which equals the definition of the Wasserstein distance

for our case outlined in section 4.2.

W (µ1, µ2)
2 = ‖m1 −m2‖2 + trace

(
C1 + C2 − 2

(
C

1/2
2 C1C

1/2
2

)1/2)
.

57 Positive semi-definite matrices intuitively, preserve the direction of any input applied to them. Marginally

more formally, this means that for any non-zero column input vector z of n real numbers, the result of zTMz

is positive or zero (i.e., non-negative). This property is important for the correct calculation of fractional

exponents—here 1
2
—of the co-variance matrix.
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